ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 02.08.2024
Просмотров: 126
Скачиваний: 0
СОДЕРЖАНИЕ
Тема 7 показатели вариации и анализ частотных распределений
Вариация признака в совокупности и значение ее изучения
7.2 Показатели центрараспределения
7.3 Показатели вариации и способы их расчета
7.4 Вариации альтернативного признака. Энтропия распределения
7.5 Виды дисперсий в совокупности, разделенной на группы. Правило сложения дисперсий
7.6 Структурные характеристики вариационного ряда распределения. Показатели дифференциации
7.8 Изучение формы распределения
7.9 Теоретические распределения в анализе вариационных рядов
7.4 Вариации альтернативного признака. Энтропия распределения
В ряде случаев возникает необходимость в измерении дисперсии так называемых альтернативных признаков, тех, которыми обладают одни единицы совокупности и не обладают другие. Примером таких признаков являются: бракованная продукция, ученая степень преподавателя вуза, работа по полученной специальности и т.д. Вариация альтернативного признака количественно проявляется в значении нуля у единицы, которая этим признаком не обладает, или единицы у той, которая данный признак имеет.
Пусть - доля единиц в совокупности, обладающих данным признаком; - доля единиц, не обладающих данным признаком, причем. Альтернативный признак принимает всего два значения - 0 и 1 с весами соответственно и. Исчислим среднее значение альтернативного признака по формуле средней арифметической:
(7.30) |
Дисперсия альтернативного признака определяется по формуле:
|
(7.31) |
Таким образом, дисперсия альтернативного признака равна произведению доли на число, дополняющее эту долю до единицы. Корень квадратный из этого показателя, т.е. , соответствует среднему квадратическому отклонению альтернативного признака. Предельное значение дисперсии альтернативного признака равно 0,25 при.
Показатели вариации альтернативных признаков широко используются в статистике, в частности, при проектировании выборочного наблюдения, обработке данных социологических обследований, статистическом контроле качества продукции, в ряде других случаев.
Обобщенной характеристикой различий внутри ряда может служить энтропия распределения. Применительно к статистике энтропия - это мера неопределенности данных наблюдения, которая может иметь различные результаты. Энтропия зависит от числа градаций признака и от вероятности каждой из них. Энтропия показывает, имеется ли закономерность в концентрации отдельных градаций у наименьшего числа позиций или, напротив, заполненность распределения одинаковая. При этом сумма вероятностей всех возможных исходов равна единице. Энтропия измеряется в битах.
Показатель энтропии представляет собой отрицательную сумму произведения вероятностей различных значений случайной величины () на логарифмы (при основании два) этих вероятностей:
|
(7.32) |
Если все варианты равновероятны, то энтропия максимальна. Если же все варианты, за исключением одного, равны нулю, то энтропия равна нулю.
Энтропия альтернативного признака () при равновероятном распределении () равна единице:
|
(7.33) |
Энтропия сложной системы вычисляется следующим образом:
|
(7.34) |
где - вероятность любого возможного состояния сложной системы.
Показатель энтропии позволяет также измерять количество информации. Чем больше информации о случайном событии, тем определеннее его состояние. Чем больше вероятность случайного события , тем меньше информации несет его осуществление. В случае.
|
(7.35) |
Следовательно, данное испытание не содержит никакой информации. Аналогично и при .
Энтропия распределения интерпретируется как мера рассредоточенности вариантов случайной переменной по ее возможным значениям, или как мера неопределенности значения реализации. Неопределенность значений реализации случайной переменной предусматривает наличие некоторого наблюдателя, находящегося в том или ином отношении к источнику неопределенности. Очевидно, можно представить ситуацию, когда для двух наблюдений степени неопределенности результата одного и того же наблюдения со случайными исходами существенно различаются. Например, различны результаты голосования при экспертных опросах для наблюдателя - участника голосования и наблюдателя, не участвующего в голосовании.
В связи с тем что верхнего предела энтропия распределения не имеет, целесообразно вычислить наряду с абсолютной и относительную величину неопределенности.
Относительная энтропия определяется как отношение ее фактической величины к максимальной, т.е.
|
(7.36) |
Это отношение изменяется от 0 до 1 и может быть интерпретировано. Чем меньше относительная энтропия, тем меньше неопределенность и выше однородность.
7.5 Виды дисперсий в совокупности, разделенной на группы. Правило сложения дисперсий
Изучая вариацию по всей совокупности в целом и опираясь на общую среднюю в своих расчетах, мы не можем определить влияние отдельных факторов, характеризующих колеблемость индивидуальных значений признака. Это можно сделать при помощи аналитической группировки, разделив изучаемую совокупность на однородные группы по признаку-фактору. При этом можно определить три показателя колеблемости признака в совокупности: дисперсию общую, межгрупповую и среднюю из внутригрупповых дисперсий.
Общая дисперсия измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию:
|
(7.37) |
Межгрупповая дисперсия () характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки. Она рассчитывается по формуле
|
(7.38) |
где - число групп;
- число единиц в-й группе;
- частная средняя по-й группе;
- общая средняя по совокупности единиц.
Внутригрупповая дисперсия () отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она исчисляется следующим образом:
|
(7.39) |
По совокупности в целом вариация значений признака под влиянием прочих факторов характеризуется средней из внутригрупповых дисперсий ():
|
(7.40) |
Между общей дисперсией , средней из внутригрупповых дисперсийи межгрупповойдисперсией существует соотношение, определяемоеправилом сложения дисперсий. Согласно этому правилуобщая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий:
|
(7.41) |
Согласно этому правилу, общая дисперсия, возникающая под действием всех факторов, равна сумме дисперсий, появляющихся под влиянием всех прочих факторов, и дисперсии, возникающей за счет группировочного признака.
Зная любые два вида дисперсий, можно определить или проверить правильность расчета третьего вида.
Правило сложения дисперсий позволяет выявить зависимость результата от определяющих факторов с помощью соотношения межгрупповой дисперсии и общей дисперсии. Это соотношение называется эмпирическим коэффициентом детерминации ():
|
(7.42) |
Он показывает, какая доля в общей дисперсии приходится на дисперсию, обусловленную вариацией признака, положенного в основу группировки.
Корень квадратный из эмпирического коэффициента детерминации носит название эмпирического корреляционного отношения ():