ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 08.08.2024

Просмотров: 388

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Теории управления квантовыми системами.

Содержание

Введение

1. Основные понятия и определения квантовой механики

1.1. Чистые и смешанные состояния

1. 2. Обозначения Дирака

1. 3. Перепутанные состояния

2. Элементы квантовой теории информации

2. 1. Кубиты

2. 2. О квантовой информации

2. 3. Преобразование одного кубита

2. 4. Перепутывание

2.5. Перепутывание и квантовая неразличимость

2.6. Логический элемент «управляемое не»

3. Парадокс эйнштейна – подольского – розена (эпр)

4. Неравенства белла

5. Квантовая криптография

5.1. Понятие о криптографии

5.2. Ключи и их распределение

5.3. Открытые ключи

5.4 Понятие о квантовой криптографии

5.4.1. Защита посредством неортогональных состояний

5.4.2. Защита посредством перепутывания

5.4.3. Практическая реализация квантово – криптографических систем

6. Квантовая телепортация

6.1 Общие представления

6.2. Протокол квантовой телепортации

6. 3. Обзор некоторых экспериментальных результатов по квантовой телепортации

6.4. Заключительные замечания: возможна ли телепортация макрообъекта?

7. Квантовые вычисления. Квантовые компьютеры.

7.1. Вводные замечания

7.2. Квантовый регистр

7.3. Задачи поиска.

7.4. Квантовые алгоритмы

7.4.1. Моделирование времени.

7.4.2. Моделирование вероятности

7.4.3. Алгоритм разложения на простые множители или алгоритм Шора

7.5. Общие требования к квантовым компьютерам Практическая реализация

Приложение. Гипотезы о квантовой природе сознания

Заключение

Словарь терминов

Литература

Казалось бы, нарушается принцип причинности - следствие и причина не разделены временем, если понимать время как способ организации последовательности событий. Поэтому Эйнштейн и соавторы, оценивали свою чисто теоретическую, но, тем не менее, жестко формализованную, модель как неприложимую к практике, эксперименту. Это состояние противоречия теории и видимой физической реальности длилось около 30 лет, хотя Н.Бор и многие другие физики полагали, что никакой проблемы здесь вообще нет. Действительно, в рамках классического подхода после того, как система распалась на составные части, никакое воздействие на одну из частей не может изменить состояние другой части, если частицы не взаимодействует. И более того, поскольку скорость распространения сигнала не может превышать скорости света, то при определенных условиях - в рамках классического подхода - воздействие на одну часть системы никаким образом не может повлиять на другую часть системы. В математическом виде это утверждение было сформулировано Дж. Беллом в 1964 г. в виде так называемых неравенств Белла, нарушение которых означает невозможность описать систему классическим образом и свидетельствовует в пользу вероятностной трактовки квантовой механики.

В 1993 году группой Ч. Беннета было показано, что в принципе сцепленные частицы могут служить своего рода «транспортом». Посредством присоединения третьей - «информационной» - частицы к одной из сцепленных частиц, можно передавать ее свойства другой, причем даже без измерения этих свойств. Экспериментальная реализация ЭПР-канала была осуществлена работами двух групп исследователей - австрийскими исследователями из университета в Инсбруке, возглавляемыми Антоном Цайлингером, и итальянскими, из университета "La Sapienza" в Риме под руководством Франческо Де Мартини. 21 апреля 2004 года в Австрии осуществлена первая коммерческая транзакция с применением квантовой криптографии. Профессор Антон Цайлингер из Венского университета перевел 3 тысячи евро, полученных от мэра, из ратуши в ближайшее отделение банка по оптическому волокну с кодом, упакованным в квантовое состояние фотона. Это наиболее защищенный из всех возможных способов передачи информации. Ключ кода произведен в банке на кристалле, преобразующем фотоны лазера в пары "спутанных" фотонов. Один фотон каждой пары оставался в банке, другой отсылался в ратушу. Измерив поляризацию фотонов, можно разделить их на две линии, по аналогии с двоичной системой компьютеров, и использовать эти линии в качестве ключа


Опыты группы Цайлингера и Де Мартини доказали выполнимость принципов ЭПР на практике для передачи через световоды состояний поляризации между двумя фотонами посредством третьего на расстояниях до 10 километров. В эксперименте неполяризованный свет, проходящий через кристалл, расщепляется на два поляризованных во взаимно перпендикулярном направлении луча. В оптическом смесителе фотон взаимодействовал с одним из пары связанных фотонов. Между ними в свою очередь возникала квантово-механическая связь, приводящая к поляризации новой пары. Согласно законам квантовой механики фотон не имеет точного значения поляризации, пока она не измерена детектором. Таким образом, измерение преобразует набор всех возможных поляризаций фотона в случайное, но совершенно конкретное значение. Измерение поляризации одного фотона связанной пары приводит к тому, что у второго фотона, как бы далеко он ни находился, мгновенно появляется соответствующая - перпендикулярная ей - поляризация. Если к одному из двух исходных фотонов "подмешать" посторонний фотон, образуется новая пара, новая связанная квантовая система. Измерив её параметры, можно мгновенно передать сколь угодно далеко - телепортировать -направление поляризации уже не исходного, а постороннего фотона. В принципе практически все, что происходит с одним фотоном пары, должно мгновенно влиять на другой, меняя его свойства вполне определенным образом. Однако на практике такая связь достаточно чувствительна ко внешним воздействиям, поэтому необходимо изолировать частицы от внешних влияний. В результате измерения второй фотон первоначальной связанной пары также приобретал некоторую фиксированную поляризацию: копия первоначального состояния "фотона-посланника" передавалась удаленному фотону. Наиболее сложно было доказать, что квантовое состояние действительно телепортировано: для этого необходимо точно знать, как установлены детекторы при измерении общей поляризации, и потребовалось тщательно синхронизовать их.

Суть экспериментов по телепортации такова: допустим имеется частица 1 и запутанная пара частиц 2–3 (типа ЭПР-пары). Объединяя частицы 1 и 2 (измеряя в белловском базисе), то есть переводя пару 1–2 в максимально запутанное состояние типа того, которое было раньше у пары 2–3, состояние 3 становится таким, каким было раньше состояние 1, поскольку общее состояние трех частиц не меняется. Таким образом, частица 1 как бы телепортируется на место частицы 3, другими словами, частица 3 приобретает свойства частицы 1.


Сейчас проводятся все более сложные эксперименты по телепортации. Используется метод, который называется «телепортация запутанности», или «обмен запутанностью». Суть его в том, что две некоррелированные системы можно связать квантовым каналом связи (запутать между собой) при помощи дополнительной вспомогательной системы, состоящей из запутанной пары. Когда эти коррелированные части вспомогательной системы передаются каждой из двух независимых систем, то последние становятся тоже запутанными, хотя раньше классически не взаимодействовали друг с другом. Такие эксперименты тоже были выполнены в 1998 году.

Такой обмен квантовой запутанностью предполагается использовать при ее пересылке в определенное место. Если доступный канал передачи имеет ограниченное качество («зашумленность»), то при прохождении через него запутанных состояний корреляции нарушаются из-за декогеренции. В такой ситуации метод квантового повторителя позволяет разделить квантовый канал на короткие участки, которые очищаются известными методами дистилляции запутанности, а затем объединяются методами обмена запутанностью.

Обмен запутанностью может быть использован и для ряда других практических целей: для построения квантового коммутатора, для увеличения скорости распределения запутанных пар между удаленными пользователями, для построения запутанных состояний, охватывающих большое число частиц, и т. п. Сейчас предложено уже довольно большое количество различных схем применения этого метода.

Так, при построении квантового коммутатора предполагается наличие определенного числа (N) пользователей и центрального коммутатора, с которым все они соединены квантовым каналом связи. Принципиальную схему работы такого коммутатора можно объяснить следующим образом. Пусть у каждого пользователя есть (в простейшем случае) одна максимально запутанная пара. Они отдают одну частицу из своей пары на центральный коммутатор, в котором происходит их объединение. В этом случае все оставшиеся у пользователей частицы оказываются квантово-запутанными. Все N частиц, которые по-прежнему у них остаются, становятся квантово-коррелированными, то есть все пользователи объединены квантовыми корреляциями, они как бы «включены» в единую квантовую сеть и могут «телепатически» общаться друг с другом. Такая схема может использоваться для генерации любых многочастичных запутанных состояний типа «шредингеровских кошек».


Итак, пусть Алисе и Бобу посылаются по одному фотону из пары запутанных фотонов. Алиса имеет у себя частицу (фотон) в (неизвестном ей) состоянии А; фотон из пары и фотон Алисы взаимодействуют ("зацепляются"), Алиса производит измерение и определяет состояние системы из двух фотонов, оказавшейся у нее. Естественно, первоначальное состояние А фотона Алисы при этом разрушается. Однако фотон из пары зацепленных фотонов, оказавшийся у Боба, переходит в состояние А. В принципе, Боб даже не знает при этом, что произошел акт телепортации, поэтому необходимо, чтобы Алиса передала ему информацию об этом обычным способом.

В работах группы ученых из университета в Инсбруке квантовая телепортация осуществлялась несколько более сложным способом - телепортируемое состояние само по себе являлось зацепленным. Генерировалось две пары запутанных фотонов, из каждой пары по одному фотону (0 и 3) направлялось Бобу, и по одному (1 и 2) - Алисе. Алиса производила измерение над фотонами 1 и 2, в результате чего пара фотонов оказывалась в одном из четырех возможных зацепленных состояний (при этом фотоны 0 и 3 также оказывались в определенном запутанном состоянии); результаты измерения сообщались Виктору. Особенность ситуации в том, что фотоны 0 и 3 первоначально не находились в зацепленном состоянии, их зацепленность порождалась действиями Алисы над фотонами 1 и 2. Боб проводил поляризационные измерения над каждым из фотонов 0 и 3 (и также сообщал результаты Виктору). Виктор проводил сравнение результатов измерений и мог фиксировать нарушение неравенства Белла, что и было сделано. Австрийские ученые также провели эксперимент в модифицированном виде. Регистрация фотонов Бобом происходила до того как Алиса производила свое измерение. Оказалось (как и следует ожидать в рамках квантовой механики), что это никак не повлияло на результаты эксперимента. В рамках классического подхода возникает неразрешимый парадокс - позднейшее по времени действие Алисы влияет на результат более раннего действия Боба. Однако с квантово- механической точки зрения парадокса нет: наблюдаемый эффект надо понимать так, что физическая интерпретация результатов Боба зависит от позднейшего решения Алисы.

Достигнув успехов в телепортации фотонов, экспериментаторы уже планируют работы с другими частицами - электронами, атомами и даже ионами. Это позволит передавать квантовое состояние от короткоживущей частицы к более стабильной. Таким способом можно будет создавать запоминающие устройства, где информация, принесенная фотонами, хранилась бы на ионах, изолированных от окружающей среды. После создания надежных методов квантовой телепортации возникнут реальные предпосылки для создания квантовых вычислительных систем. Телепортация обеспечит надежную передачу и хранение информации на фоне мощных помех, когда все другие способы оказываются неэффективными, и может быть использована для связи между несколькими квантовыми компьютерами. Кроме того, и сами разработанные исследователями методы имеют огромное значение для будущих экспериментов по квантовой механике, для проверки и уточнения целого ряда современных физических теорий. В различных странах обсуждаются программы по применению эффекта квантовой телепортации для создания квантовых оптических компьютеров, где носителями информации будут фотоны. Первые электронные компьютеры потребляли десятки киловатт энергии. Скорость работы квантовых компьютеров и объемы информации будут на десятки порядков превосходить таковые у существующих компьютеров. В будущем сети квантовой телепортации получат такое же распространение, как современные телекоммуникационные сети. Кстати, квантовые вирусы будут гораздо опаснее нынешних сетевых, так как после своей телепортации они смогут существовать вне компьютера. Квантовые компьютеры будут реализовывать холодные вычисления, работая практически без затрат энергии. Ведь трение, ведущее к бесполезному расходованию энергии, понятие макроскопическое. В квантовом мире главный вредитель - шум, исходящий из некоррелированного взаимодействия объектов друг с другом.


К настоящему времени квантовая информатика обрела все признаки точной науки, включая систему определений, постулатов и строгих теорем. К числу последних относится, в частности, теорема о невозможности клонирования кубита, строго доказанная с применением теории унитарного оператора квантовой эволюции. Т.е. невозможно, получив полную информацию о квантовом объекте А (изначально его состояние неизвестно), создать второй, точно такой же, объект, не разрушив первый. Дело в том, что создание двух кубитов абсолютных копий друг друга приводит к противоречию, которое можно было бы назвать парадоксом квантовых близнецов. Однако и без того ясно, что создание двух электронов в одном и том же квантовом состоянии невозможно в силу ограничения, накладываемого принципом Паули. Парадокс близнецов не возникает, если при клонировании снабжать копии отличительными признаками: пространственно-временными, фазовыми и др. Тогда генерацию лазерного излучения можно понимать как процесс клонирования фотона-затравки, попавшего в среду с оптическим усилением. Если же к квантовому копированию подходить строго, то рождение клона должно сопровождаться уничтожением исходника. А это и есть телепортация.

Сравним, как происходит передача информации по факсу и при квантовой телепортации. При обычной передаче по факсу, оригинал сканируется, из него извлекается часть информации, и он остается более-менее прежним после сканирования. Полученная (отсканированная) информация посылается на принимающее устройство, где она отпечатывается на неком материале (например, бумаге), и получается приблизительная копия исходного оригинала.

При квантовой телепортации два объекта - В и С - сначала соприкасаются, а потом разделяются. Объект В отправляется на передающее устройство, а С - на принимающее. В передающем устройстве объект В «сканируется» вместе с объектом А, который необходимо телепортировать, из них извлекается некоторая информация, а состояние А и В полностью искажается. Отсканированная информация посылается на получающее устройство, где она используется для выбора тех или иных режимов, которые затем применяются к объекту С, чтобы превратить С в точную копию прежнего состояния А.

Квантовая телепортация переносит квантовое состояние системы и ее корреляций в другую систему. Более того, современному значению слова "телепортация" соответствует следующая процедура: объект «дезинтегрируется» в одном месте, а в другом месте возникает его совершенная копия. Объект или его полное описание в ходе телепортации никогда не находится между этими двумя местами. «Дезинтеграция» квантового состояния является необходимым условием согласно теореме о запрете на клонирование.