Файл: ГЛАВА 9 Проектирование асинхронных машин.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 27.04.2019

Просмотров: 4124

Скачиваний: 11

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Относительные значения сопротивлений взаимной, индукции, как правило, в 30—40 раз больше, чем x1*. Обычно х12* = 2...4.

Относительные значения активных сопротивлений обмотки статора и приведенного сопротивления обмотки ротора близки друг к другу и обычно составляют несколько сотых долей: r1*r'2* ≈ 0,02... 0,03; лишь, в машинах малой мощности их значения несколько увеличиваются.

Сопротивление r12* обычно составляет 0,05...0,2.



9.11. ПОТЕРИ И КПД


Потери в асинхронных машинах подразделяют на потери в стали (основные и добавочные), электрические, вентиляционные, меха­нические и добавочные при нагрузке.

Основные потери в стали в асинхронных двигателях рассчитыва­ют только в сердечнике статора, так как частота перемагничивания ротора, равная f2 = s f1, в режимах, близких к номинальному, очень мала и потери в стали ротора даже при больших индукциях незна­чительны [6].

В пусковых режимах f2 близка к f1 и потери в стали ротора соответственно возрастают, однако при расчете пусковых характеристик потери находят только для определения нагрева ротора за время пуска. Наибольшими потерями в пусковых режимах являются элект­рические потери в обмотках. Они во много раз превышают потери номинального режима, поэтому пренебрежение потерями в стали ротора при больших скольжениях не вносит сколько-нибудь замет­ной погрешности в расчет.

Основные потери в стали статоров асинхронных машин определяют в соответствии с (6.4) по следующей формуле:


Рст.осн = р1,0/50 (9.187)


где p1,0/50 — удельные потери (табл. 9.28) при индукции 1 Тл и частоте перемагничивания 50 Гц; β — показатель степени, учитывающий за­висимость потерь в стали от частоты перемагничивания; для боль­шинства электротехнических сталей β = 1,3...1,5; kда и kдz —коэффициенты, учитывающие влияние на потери в стали неравномерности распределения потока по сечениям участков магнитопровода и технологических факторов. Для машин мощностью меньше 250 кВт приближенно можно принять kда = l,6 и kдz = 1,8; для машин большей мощности kда = 1,4 и kдz = 1,7; Ва и Вz1ср— индукция в ярме и средняя индукция в зубцах статора, Тл; mа, mz1 — масса стали ярма и зубцов статора, кг:


ma = π(Da - ha) ha lст1 kc1 γc ; (9.188)


mz1 = hz1bz1ср Z1 lст1 kc1 γc ; (9.189)


hа — высота ярма статора, м:


hа = 0,5(Da - D) – hп1 ;


hz1 — расчетная высота зубца статора, м; bz1ср — средняя ширина зуб­ца статора, м:


bz1ср = (bz1max + bz1min)/ 2 ;


γс — удельная масса стали; в расчетах принимают γс = 7,8 • 103 кг/м3.


Таблица 9.28. Удельные потери в стали, Вт/кг, толщиной 0,5 мм

при индукции В = 1 Тл и частоте перемагничивания f = 50 Гц


Марка стали

Удельные потери, Вт/кг

Марка стали

Удельные потери, Вт/кг

2013

2,5

2312

1,75

2212

2,2

2412

1,3

2214

2



Добавочные потери в стали (добавочные потери холостого хода) подразделяют на поверхностные (потери в поверхностном слое ко­ронок зубцов статора и ротора от пульсаций индукции в воздушном зазоре) и пульсационные потери в стали зубцов (от пульсации ин­дукции в зубцах).


Для определения поверхностных потерь вначале находят ампли­туду пульсации индукции в воздушном зазоре над коронками зуб­цов статора и ротора (рис. 9.53, а), Тл:


Рис. 9.53. К расчету поверхностных потерь в асинхронных машинах:

а — пульсация индукции в воздушном зазоре;

б — зависимость β0 =f /(bш / S)



B01(2) = β01(2) kδ Bδ. (9.190)


Для зубцов статора β01 зависит от отношения ширины шлица пазов ротора к воздушному зазору: β01 = f (bш2 / δ); для зубцов ротора — от отношения ширины шлица пазов статора к воздушно­му зазору: β02 = f (bш1 / δ) . Зависимость β0 = f (bш / δ) приведена на рис. 9.53, б.

По В0 и частоте пульсаций индукции над зубцами, равной Z2n для статора и Z1n для ротора, рассчитывают удельные поверхност­ные потери, т. е. потери, приходящиеся на 1м2 поверхности головок статора и ротора:

для статора

Рпов1 = 0,5 k01 (9.191)


для ротора

Рпов2 = 0,5 k02 (9.192)


В этих выражениях k01(02) — коэффициент, учитывающий влияние обработки поверхности головок зубцов статора (ротора) на удель­ные потери; если поверхность не обрабатывается (двигатели мощ­ностью до 160 кВт, сердечники статоров которых шихтуют на цилиндрические оправки), то k01(02) = 1,4...1,8, при шлифованных поверхностях (наружная поверхность роторов машин средней и большой мощности и внутренняя поверхность статора двигателей Р2 > 160 кВт) k01(02) = 1,7...2,0; n = nc (1 - s) ≈ nc — частота вращения двигателя, об/мин.

Полные поверхностные потери статора, Вт,

Рпов.1 = pпов.1 (tz1bш1) Z1 lст1. (9.193)


Полные поверхностные потери ротора, Вт,


Рпов2 =pпов2(tz2 - bш2)Z2 lcт2. (9.194)


Для определения пульсационных потерь вначале находится амплитуда пульсаций индукции в среднем сечении зубцов Впул, Тл:

для зубцов статора

Впул1 = (9.195)


для зубцов ротора


Впул2 = (9.196)


В этих формулах Bz1cp и Bz2cp — средние индукции в зубцах ста­тора и ротора, Тл:


(9.197)


При открытых пазах на статоре или на роторе при определении γ1 и γ2 в (9.197) вместо bш1 или bш2 подставляют расчетную ширину раскрытия паза, равную:


b'ш1(2) = (9.198)


(индекс 1 при расчете b'ш1, индекс 2 при расчете b'ш2).

Значения коэффициента kδ в зависимости от отношения δп/δ для открытых пазов приведены на рис. 9.54.

Пульсационные потери в зубцах статора


Pпул1 ≈ 0,11 ; (9.199)


пульсационные потери в зубцах ротора


Pпул2 ≈ 0,11 ; (9.200)








Рис. 9.54. К расчету пульсационных потерь

в асинхронных машинах




В этих формулах mz1 — масса стали зуб­цов статора, кг, определяется по (9.189); mz2 — масса стали зубцов ротора, кг:


mz2 = Z2 hz2 bz2ср lст2 kc2 γc (9.201)


где hz2 — расчетная высота зубца ротора, м; bz2cp — средняя ширина зубца ротора, м:


bz2cp = (bz2max + bz2min) / 2.


Поверхностные и пульсационные потери в статорах двигателей с и короткозамкнутыми или фазными роторами со стержневой обмоткой обычно малы, так как в пазах таких роторов bш2 мало и пульса­ции индукции в воздушном зазоре над головками зубцов статора незначительны. Поэтому расчет этих потерь в статорах таких двигателей не проводят.


В общем случае добавочные потери в стали


Рстдоб = Рпов1 + Рпул1 + Рпов2 + Рпул2 (9.202)


и полные потери в стали асинхронных двигателей


Pст = Рст.осн + Рст.доб. (9.203)


Обычно Рст.доб приблизительно в 5—8 раз меньше, чем Рст.осн.

Электрические потерн в асинхронных двигателях рассчитывают раздельно в обмотках статоров и роторов.

Электрические потери во всех фазах обмотки статора, Вт,


Pэ1 = m1 r1. (9.204)


Электрические потери во всех фазах обмотки фазного ротора, Вт,


Рэ2 = m2 r2 = m1. (9.205)


Электрические потери в обмотке короткозамкнутого ротора, Вт,


Pэ2 = m2 r2 = Z2 r2 (9.206)


или


Рэ2 = m1 . (9.207)


Электрические потери в щеточном контакте Рэ.ш, Вт, фазных ро­торов асинхронных двигателей, не имеющих приспособлений для подъема щеток и замыкания накоротко контактных колец при но­минальном режиме работы,


Рэ.щ = m2 ΔUщ Iк.к, (9.208)


где ΔUщ — падение напряжения в скользящем контакте щетка — коль­цо, В; принимается в зависимости от марки щеток по табл. П 4.2; Iк.к — ток в кольце, А; при соединении обмотки ротора в звезду Iк.к = I2 ; при соединении обмотки ротора в треугольник (при m2 = 3) Iк.к = I2.

Механические и вентиляционные потери в асинхронных двигате­лях рассчитывают по приближенным формулам, полученным из опыта проектирования и эксплуатации двигателей. Коэффициент трения (Кт) учитывает конструкцию, скорость вращения, число пар полюсов, мощность двигателя. Его размерность изменяется в зависимости от вида формулы для определения Рмех (9.209 — 9.213).

Потери на трение в подшипниках и вентиляционные потери в двигателях с радиальной системой вентиляции без радиальных вен­тиляционных каналов, с короткозамкнутым ротором и вентиляци­онными лопатками на замыкающих кольцах, Вт,


Рмех ≈ Кт (n / 1000)2 (10D)3 ; (9.209)


Кт = 5 при 2р = 2; Кт = 6 при 2р ≥ 4 для двигателей с Da ≤ 0,25 м;

Кт = 6 при 2р = 2; Кт = 7 при 2р ≥ 4 для двигателей с Da > 0,25 м.

В двигателей с двигателях с внешним обдувом (0,1 ≤ Da ≤ 0,5 м)


Рмех = Кт (n /10)2 D4a ; (9.210)


Кт = 1 для двигателей с 2р = 2 и Кт = 1,3(1 - Da) при 2р ≥ 4.

В двигателях с радиальной системой вентиляции средней и боль­шой мощности


Рмех = 1,2 2 р τ3 (nк +1,1) 103 (9.211)


где nк — число радиальных вентиляционных каналов; при отсутствии радиальных каналов nк = 0.

В двигателях с аксиальной системой вентиляции


Рмех = Кт(n/1000)2 (10 Dвент)3, (9.212)


где D вент — наружный диаметр вентилятора, м; в большинстве кон­струкций можно принять DвентDa; Kт = 2,9 для двигателей с Da ≤ 0,25 м; Кт = 3,6 для двигателей с Da = 0,25...0,5 м.

В двигателях большой мощности (0,5 < Da < 0,9 м)


Рмех = Кт (10Da)3 (9.213)


В этом выражении коэффициент Кт принимается по табл. 9.29.



Таблица 9.29. К расчету механических потерь

двигателей большой мощности


2p

2

4

6

8

10

12

Кт

3,65

1,5

0,7

0,35

0,2

0,2



Потери на трение щеток о контактные кольца, Вт, рассчитывают для двигателей с фазными роторами при отсутствии приспособле­ний для подъема щеток и закорачивания контактных колец в номи­нальном режиме работы:


Ртр.щ = Ктр ρщ Sщ υк, (9.214)


где Ктр — коэффициент трения щеток о контактные кольца (обычно принимается равным 0,16—0,17); ρщ — давление на контактной поверхности щеток, кПа (см. табл. П 4.2); Sщ — общая площадь контакт­ной поверхности всех щеток, м2; vk — линейная скорость поверхности контактных колец, м/с.

Добавочные потери при нагрузке асинхронных двигателей возникают за счет действия потоков рассеяния, пульсаций индукции в воздушном зазоре, ступенчатости кривых распределения МДС об­моток статора и ротора и ряда других причин. В короткозамкнутых роторах, кроме того, возникают потери от поперечных токов, т. е. токов между стержнями, замыкающихся через листы сердечника ротора. Эти токи особенно заметны при скошенных пазах ротора. В таких двигателях, как показывает опыт эксплуатации, добавоч­ные потери при нагрузке могут достигать 1...2 % (а в некоторых слу­чаях даже больше) от подводимой мощности. ГОСТ устанавливает редкие расчетные добавочные потери при номинальной нагрузке, равные 0,5 % номинальной потребляемой мощности. При расчетах потерь и КПД двигателей в режимах, отличных от номинального, значение добавочных потерь пересчитывают пропорционально квадрату токов:


Рдоб = Рдоб.ном (I1/I1ном)2. (9.215)


Коэффициент полезного действия двигателя


η = Р2 /P1 = 1 - / P1, (9.216)


где — сумма всех потерь в двигателе, Вт.

Ток холостого хода двигателя


(9.217)


При определении активной составляющей тока холостого хода принимают, что потери на трение и вентиляцию и потери в стали при холостом ходе двигателя такие же, как и при номинальном ре­жиме. При этом условии


Iх.х.а = (9.218)


Электрические потери в статоре при холостом ходе приближен­но принимаются равными:


Рэ1х.х = m I2μ r1. (9.219)


Реактивная составляющая тока холостого хода


Iх.х.рIμ (9.220)


Коэффициент мощности при холостом ходе


cos φх.х = Iх.х.а / Iх.х. (9.221)


9.12. РАСЧЕТ РАБОЧИХ ХАРАКТЕРИСТИК


Рабочими характеристиками асинхронных двигателей называют зависимости P1, I1, cosφ, η, s1 = f (P2). Часто к ним относят также за­висимости М = f (P2) и I2 или = (P2) [6].

Методы расчета характеристик базируются на системе уравне­ний токов и напряжений асинхронной машины, которой соответст­вует Г-образная схема замещения (рис. 9.55). Г-образная схема полу­чена из Т-образной схемы замещения (см. рис. 9.47), в которой ветвь, содержащая параметр Z12, вынесена на вход схемы. Т-образ­ная и Г-образная схемы идентичны для данной конкретной ЭДС, для которой рассчитывают комплексный коэффициент , равный взятому с обратным знаком отношению вектора напряжения фазы к вектору ЭДС —


В асинхронных двигателях при изменении тока от синхронного холостого хода до номинального изменяется незначительно. Поэ­тому для получения рабочих характеристик коэффициент , рассчи­тывают для синхронного холостого хода и принимают его значение неизменным. Это не вносит заметных погрешностей в расчет харак­теристик, так как значение коэффициента , во всем диапазоне изме­нения нагрузки от Р2 = 0 до Р2 = Р2ном изменяется лишь в третьем или четвертом знаке.

Корректировку коэффициента , обычно производят лишь при расчете пусковых характеристик или режимов работы двигателя с большими скольжениями, при которых ток статора существенно превышает номинальный.

Для расчета рабочих характеристик коэффициент определяют из выражения




Рис. 9.55. Г-образная схема замещения асинхронной машины (а)

и соответствующая ей векторная диаграмма (б)


где


(9.222)


В асинхронных двигателях мощностью более 2 — 3 кВт, как пра­вило, | γ | ≤ 1°, поэтому реактивной составляющей коэффициента с1, можно пренебречь, тогда приближенно


(9.223)


При более точных расчетах определяют и активную, и реактив­ную составляющие c1 по следующим формулам:


(9.224)


Полное значение


(9.225)


Как видно, выражение (9.223) может быть получено из (9.225) при условии r12 << х12 и r1 << х12, что практически всегда имеет место в асинхронных машинах мощностью Р2 ≥ 2...3 кВт. При этих же условиях с1p ≈ 0 и с1a = с1.

Рабочие характеристики можно рассчитать по круговой диаграмме или аналитическим методом. Расчет по круговой диаграмме более нагляден, но менее точен, так как требует графических построений, снижающих точность расчета. Аналитический метод более универсален, позволяет учитывать изменение отдельных пара­метров при различных скольжениях и может быть легко переведен на язык программ при использовании в расчетах ЭВМ.

Аналитический метод расчета. В настоящее время практически все расчеты проводят аналитическим методом. Формулы для расчета рабочих характеристик приведены в табл. 9.28 в удобной для руч­ного счета последовательности. Расчет характеристик проводят, задаваясь значениями скольжений в диапазоне s ≈ (0,2...1,5) sном. Но­минальное скольжение можно предварительно взять при sном . Для построения характеристик достаточно рассчитать значения требуемых величин для пяти - шести различных скольжений, выбранных в указанном диапазоне примерно через равные интервалы (см. при­мер расчета).

Перед началом расчета рекомендуется выписать значения посто­янных, не зависящих от скольжения величин, как это показано в формуляре и в примере расчета. К таким величинам относятся но­минальное напряжение фазы U1ном, сопротивления r1 и , сумма по­терь Pcт + Pмех (для двигателей с фазным ротором также Ртр.щ) и со­ставляющие тока синхронного холостого хода: реактивная IIμ и активная, которую определяют из выражения