Файл: Введение. Предмет и задачи микробиологии.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.11.2023

Просмотров: 459

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Лечение дисбактериоза

Радиационная  стерилизация.      Лучистая  энергия губительно действует на клетки живого организма, в том числе  на различные микроорганизмы. Принцип  стерилизующего эффекта этих излучений  основан на способности вызывать в живых клетках при определенных дозах поглощенной энергии такие изменения, которые неизбежно приводят их к гибели за счет нарушения метаболических процессов. Чувствительность микроорганизмов к ионизирующему излучению зависит от многих факторов: наличия влаги, температуры и др.     Облучение объектов в конечной упаковке производят на гамма-установках, ускорителях электронов и других источниках ионизирующего излучения дозой 25 кГр (2,5 Мрад) или другими дозами в зависимости от конкретных условий (микробная обсемененность продукции до стерилизации, радиорезистентность контаминатов, величина коэффициента надежности стерилизации). Стерилизацию проводят в соответствии со "Сводом правил, регламентирующих проведение в странах - членах СЭВ радиационной стерилизации материалов и изделий медицинского назначения" и "Сводом правил, регламентирующих проведение в странах - членах СЭВ радиационной стерилизации лекарственных средств" и утвержденными инструкциями на каждый вид изделия.     Радиационный  метод стерилизации может быть рекомендован для изделий из пластмасс, изделий одноразового использования в упаковке, перевязочных материалов, некоторых лекарственных средств и других видов медицинской продукции.     Радиоактивная стерилизация является высокоэффективной   для   крупных производств. Стерилизация фильтрованием.      Микробные клетки и споры можно рассматривать  как нерастворимые образования  с очень малым (1—2 мкм) поперечником частиц. Подобно другим включениям, они могут быть отделены от жидкости механическим путем — фильтрованием  сквозь мелкопористые фильтры. Этот метод стерилизации включен в ГФ XI для стерилизации термолабильных растворов. Такими фильтрами могут быть перегородки из неглазурованного фарфора (керамики), асбеста, стекла, пленок, пропитанных коллодием, и другого пористого материала. По конструкции их подразделяют на глубинные и мембранные фильтры с размерами пор не более 0,3 мкм. В настоящее время используют различные фильтры. Глубинные фильтры: керамические и фарфоровые (размер пор 3—4 мкм), стеклянные (около 2 мкм), бумажно-асбестовые (1 —1,8 мкм), а также мембранные (ультра) фильтры и «Владипор» (0,3 мкм) и др.Перспективными  являются также полимерные пленки   с   цилиндрическими порами —  ядерные   фильтры.     Стерилизующее фильтрование осуществляют в установках, основными частями которых являются фильтродержатель и фильтрующая среда. Используют два типа держателей: пластинчатые, в которых фильтр имеет форму круглой или прямоугольной пластины, и патроны, содержащие один или больше трубчатых фильтров. Перед фильтрованием производят стерилизацию фильтра в держателе и емкости для сбора фильтрата насыщенным водяным паром при температуре 120+2 °С или горячим воздухом при температуре 180 °С.     Стерилизующая фильтрация с помощью фильтров имеет  преимущества по сравнению с методами термической стерилизации. Для многих растворов термолабильных веществ (апоморфина гидрохлорида, викасола, барбитала натрия и др.) он является единственно доступным методом стерилизации. Стерилизующая фильтрация перспективна для стерилизации глазных капель, особенно с витаминами, которые готовят в условиях аптек в больших количествах. Использование мембранных фильтров обеспечивает чистоту, стерильность и апирогенность растворов.Стерилизация ультрафиолетовой радиацией.УФ-радиация является мощным стерилизующим фактором, способным убивать и вегетативные, и споровые формы микроорганизмов. В настоящее время ультрафиолетовая радиация широко используется в различных отраслях народного хозяйства для обеззараживания воздуха помещений, воды и других объектов. Использование их в аптеках имеет большое практическое значение и существенные преимущества по сравнению с применением дезинфицирующих веществ, так как последние могут адсорбироваться лекарственными средствами приобретая резкие запахи.     УФ-радиация — невидимая коротковолновая  часть солнечного света с длиной волны меньше 300 нм. Она вызывает фотохимическое нарушение ферментных систем микробной клетки, действует на ее протоплазму с образованием ядовитых органических пероксидов, а также приводит к фотодимеризации тиаминов.     Эффективность бактерицидного действия УФ-радиации зависит от ряда факторов: от длины волны излучателя, его дозы, вида инактивируемых микроорганизмов, запыленности и влажности среды. Наибольшей стерилизующей способностью обладают лучи с длиной волны 254—257 нм. Имеет значение величина дозы и время облучения. В зависимости от времени воздействия излучения различают стадию стимуляции, угнетения и гибели микробных клеток. Вегетативные клетки более чувствительны к УФ-радиации, чем споры. Для их гибели требуется доза, в среднем в 10 раз выше, чем для вегетативных клеток.     В качестве источников ультрафиолетовой радиации в аптеках применяют  специальные лампы БУВ (бактерицидная  увиолевая). Излучение лампы БУВ обладает большим бактерицидным  действием, так как максимум излучения лампы близок к максимуму бактерицидного действия (254 нм). В то же время образование озона и окислов азота незначительно, поскольку на долю волн, образующих эти продукты, приходится 0,5 %. Промышленностью выпускаются лампы БУВ-15, БУВ-30, БУВ-60 и др. (цифра обозначает мощность в ваттах).     В настоящее время ультрафиолетовые лампы широко используются в аптеках  для стерилизации воздуха, воды для  инъекций и воды дистиллированной, вспомогательных материалов и т. д.     Для обеззараживания воздуха аптечных помещении используют различные бактерицидные лампы. Количество и мощность бактерицидных ламп должны подбираться с таким расчетом, чтобы при прямом облучении на 1 м объема помещения приходилось не менее 2—2,5 Вт мощности излучателя, а для экранированных    бактерицидных    ламп — 1  Вт.     Настенные и потолочные бактерицидные облучатели подвешиваются на высоте 1,8—2 м от пола, размещая их по ходу конвекционных  токов воздуха, равномерно по всему  помещению. В отсутствие людей стерилизацию воздуха проводят неэкранированными лампами из расчета 3 Вт мощности лампы на 1 м" помещения. Время стерилизации 1,5—2 ч. Удобнее пользоваться в аптеках экранированными лампами, лучи которых направлены вверх и не оказывают воздействия на глаза и кожные покровы. Наличие экранированных ламп позволяет обеззараживать воздух в присутствии персонала. В этом случае число ламп определяется из расчета 1 Вт мощности лампы на 1 м3 помещения.          При стерилизации воздуха УФ-радиацией  необходимо учитывать возможность  многочисленных химических реакций (фотораспад, фотоперегруппировка, фотосенсибилизация и др.) лекарственных веществ при поглощении ими радиации. Если натрия, кальция и калия хлориды, магния сульфат, натрия цитрат и другие вещества не поглощают излучение в области 254 нм, то барбитал натрия, дибазол, папаверина гидрохлорид, апоморфин, новокаин, анальгин поглощают его, следовательно, в этих веществах могут протекать различные фотохимические реакции. Поскольку в настоящее время этот вопрос полностью не изучен, целесообразно все лекарственные вещества, находящиеся в помещении, хранить в таре, не пропускающей УФ-радиацию (стекло, полистирол, окрашенный полиэтилен и др.).     При стерилизации воздуха УФ-радиацией  необходимо соблюдать правила техники  безопасности, чтобы избежать нежелательного воздействия на организм. При неумелом пользовании облучателями может произойти ожог конъюнктивы глаз и кожи. Поэтому категорически запрещается смотреть на включенную лампу. При изготовлении лекарственных препаратов в поле УФ-радиации надо защищать руки 2 % раствором или 2 % мазью новокаина или кислоты парааминобензойной. Также необходимо систематически проветривать помещение, так как при этом образуются окислы азота и озон.     УФ-радиацию используют и для стерилизации воды дистиллированной при подаче ее по трубопроводу, что имеет большое  значение при асептическом изготовлении лекарственных препаратов в отношении наличия микроорганизмов в нестерильных лекарственных формах. При стерилизации воды дистиллированной не происходит накопления пероксидных соединений. Под влиянием УФ-радиации инактивируются некоторые пирогенные вещества, попавшие в воду.      Лампы ультрафиолетового излучения целесообразно  использовать для обеззараживания  поступающих в аптеку рецептов и  бумаги, являющихся одним из основных источников микробного загрязнения  воздуха и рук ассистента. Ультрафиолетовую радиацию можно использовать также для стерилизации вспомогательных материалов и аптечного инвентаря, что имеет большое значение для создания асептических условий.     Химическая  стерилизация.      Этот  метод основан на высокой специфической (избирательной) чувствительности микроорганизмов к различным химическим веществам, что обусловливается физико-химической структурой их оболочки и протоплазмы. Механизм антимикробного действия веществ еще не достаточно изучен. Считают, что некоторые вещества вызывают коагуляцию протоплазмы клетки, другие действуют как окислители, ряд веществ влияет на осмотические свойства клетки, многие химические факторы вызывают гибель микробной клетки благодаря разрушению окислительных и других ферментов.     Химическая стерилизация подразделяется на стерилизацию газами и стерилизацию растворами. Газовая стерилизация.      Своеобразной  химической стерилизацией является метод стерилизации газами и аэрозолями. Для этого можно использовать газы: оксиды этилена и пропилена, оксиды (3-пропиллактона, полиэтиленоксиды, смесь этилена оксида с углерода диоксидом или метилом бромистым и др.).     Газовая стерилизация. Этот вид химической стерилизации основан на применении летучих дезинфицирующих веществ, легко удаляемых из стерилизуемого объекта, путем слабого нагревания или вакуума. Применяется для стерилизации чувствительных к нагреванию лекарственных веществ. На практике используются два вещества — окись этилена и р-пропиолактон. Их антимикробное действие основано на спонтанном гидролизе, которому указанные газы подвергаются в растворе, в результате чего образуются соединения, непосредственно действующие на микроорганизмы.     Метод стерилизации окисью этилена в смеси  с углекислым газом был включен  в фармакопею США 1965 г. и Британскую фармакопею 1963 г. Жидкая окись этилена кипит при 10,7°, хранится в стальных баллонах, легко воспламеняется, раздражающе действует на кожу. В концентрации 0,5 мг на 1 мл окись этилена становится безвредной для человека. Для еще большего уменьшения вредного воздействия применяется в смеси с углекислым газом (9+1 часть). Окись этилена используют для стерилизации как термолабильных веществ, так и инструментов, аппаратуры, пластмасс, перевязочных материалов. Обработку осуществляют в специальных аппаратах с камерами, где поочередно создают вакуум и давление, после чего производят 2—4-кратную обработку стерильным воздухом. Для стерилизации растворов достаточно 400—500 мг окиси этилена на 1 л при 20°; длительность экспозиции 6 ч. Для стерилизации растворов р - пропиолактоном применяют 0,2% объемную концентрацию газа при 37°С в течение 2 ч.     При химической стерилизации газами погибают вегетативные формы микроорганизмов  и плесневые грибы. Чувствительность различных видов микроорганизмов  к ядовитым газам весьма индивидуальна. Так, стрептококки погибают .в воздухе при концентрации этилена оксида 500 мг/м

СУЛЬФАНИЛАМИДЫ

Группа хинолонов/фторхинолонов

Симптомы

Диагноз ВИЧ-инфекции


3 вопрос: Рост грибов.
Гифы грибов растут путем удлинения кончиков (апикальный рост). У большинства грибов любая часть мицелия способна к росту. Для посева достаточно маленького кусочка мицелия - из него образуется новый таллом. Выделяют два типа роста грибов – дрожжевой и мицелиальный (гифальный).
Дрожжевые грибы (дрожжи) имеют вид овальных клеток. Гифальные (плесневые) грибы образуют ветвящиеся тонкие нити (гифы), сплетающиеся в грибницу или мицелий (плесень).

Рис. 2. Дрожжеподобный гриб рода Candida образует псевдомицелий (фиолетовые клетки).



Рис. 3. Грибы рода а) Aspergillus, б) Penicillium (рисунок).


Гифы низших грибов перегородок не имеют.
Гифы высших грибов перегородки имеют.



Рис. 4. Высшие грибы рода Penicillium (фото).

 



Рис. 5. Высшие грибы рода Aspergillus (фото).

4 вопрос: Размножение грибов.
Структуры и механизмы, обеспечивающие размножение, исключительно многообразны и служат основой для классификации грибов. У грибов различают вегетативное, бесполое и половое размножение.
Вегетативное размножение может осуществляться при отделении от основной массы мицелия его частей, которые могут развиваться самостоятельно. Кроме того, на мицелии могут развиваться артроспоры (оидии) и хламидоспоры. Артроспоры образуются в результате распадения гиф на отдельные короткие клетки, каждая из которых дает начало новому организму. Хламидоспоры образуются примерно так же, но они имеют более толстую темноокрашенную оболочку. Они хорошо переносят неблагоприятные условия и прорастают чаще всего мицелием.
Вегетативное размножение возможно также путем почкования мицелия или отдельных клеток, например у дрожжевых грибов. Процесс этот состоит в том, что на клетках мицелия образуются выросты (почки), постепенно увеличивающиеся в размерах. Такие почки отделяются от материнской клетки или сохраняют с ней связь, принимая вид своеобразных цепочек. Почкование особенно свойственно дрожжевым грибам, но бывает и у представителей других групп. Например, часто почкуются сумкоспоры у голосумчатых грибов и базидиоспоры некоторых головневых.

Бесполое размножение осуществляется при помощи специальных образований, называемых спорами. Споры могут развиваться внутри специальных споровместилищ (эндогенно) или на концах особых выростов мицелия — конидиеносцах (экзогенно).
У многих низших грибов бесполое размножение происходит при помощи подвижных зооспор, снабженных жгутиками и способных к самостоятельному движению в воде.
Зооспоры развиваются в зооспорангиях. У других низших грибов споры лишены органов движения, образуются они в спорангиях, а сами споры называются спорангиоспорам и. Спорангии сидят на особых, отличных от остальных, гифах — спорангионосцах, поднимающихся кверху от субстрата, на котором они развились. Такое расположение спорангиев облегчает распространение спор токами воздуха, после того как они освобождаются от разрыва оболочки спорангиев.
Бесполое размножение при помощи конидий известно у сумчатых, базидиальных, несовершенных и немногих низших грибов, приспособленных к наземному существованию.
Конидии одеты оболочкой, у них нет органов движения (жгутиков), распространяются они воздушными течениями, насекомыми, человеком. По воздуху конидии могут переноситься на большие расстояния. Есть сведения, что споры возбудителя стеблевой ржавчины пшеницы переносились на 1000 км от источника массового их развития.
Конидии различаются по способу образования. Описание этого процесса и разных типов конидий дается в главе о несовершенных грибах. Образование их происходит на мицелии или в разного рода споровместилищах. При прорастании конидии дают ростковую трубку, а затем гифы.
Половое размножение состоит в слиянии мужских и женских половых гамет, в результате чего возникает зигота. Гаметы эти гаплоидны, т. е. имеют половинный (непарный) набор хромосом. При образовании зиготы ядра сливаются, происходит удвоение числа хромосом и наступает диплоидная фаза с полным (парным) набором хромосом. У низших грибов половой процесс состоит в слиянии одинаковых и разных по размерам подвижных гамет (соответственно изо- и гетерогамия) или имеет место оогамный половой процесс. В последнем случае развиваются женские (оогонии) и мужские (антеридии) половые органы. В оогониях развивается несколько яйцеклеток или одна из них. Оплодотворение яйцеклетки происходит или сперматозоидами, или выростом (отрогом) антеридия, переливающим в оогоний свое содержимое. У низших грибов половой продукт (ооспора) прорастает в спорангий со многими в нем спорами.


У грибов-зигомицетов половой процесс состоит в слиянии двух, чаще внешне не различимых клеток на концах мицелия (зигогамия). У многих из них сливаться могут лишь клетки, имеющие разные половые знаки, условно обозначаемые + или —, хотя внешне и одинаковые. Это явление названо гетероталлизмом (раздельнополостью). Открыто оно было у мукоровых грибов, а в настоящее время известно у грибов из многих систематических групп.
У сумчатых грибов половой процесс состоит в оплодотворении выростом антеридия женского полового органа (архикарпа) с недифференцированным на яйцеклетки содержимым. Архикарп образован из аскогона. и трихогины, через которую и переливается в аскогон содержимое антеридия. При этом мужские и женские ядра соединяются попарно (но не сливаются), образуя дикарионы. После оплодотворения из аскогона развиваются выросты — аскогенные гифы. На их концах после слияния ядер (кариогамии) образуются сумки, или аски, и в них сумкоспоры, или аскоспоры. Перед образованием аскоспор происходит редукционное деление. Сумки тем или иным путем оказываются заключенными в плодовые тела — клейстотеции, перитеции, апотеции, псевдотеции. Половой процесс у сумчатых грибов может идти и иным путем, но всегда заканчивается образованием сумки.
Для базидиальных грибов характерен половой процесс, называемый соматогамия. Он состоит в слиянии двух клеток вегетативного мицелия. Половой продукт — базидия, на которой образуются 4 базидиоспоры, поровну с разными половыми знаками. Базидиоспоры гаплоидны, они дают начало гаплоидному мицелию, который недолговечен. Путем образования анастамозов между нитями мицелия или другим путем происходит слияние гаплоидных мицелиев и образование дикариотического мицелия, на котором происходит образование базидий с базидиоспорами.
У несовершенных грибов, а в некоторых случаях и у других, половой процесс заменяется гетерокариозом (разноядерностью)и парасексуальным процессом. В первом случае при наличии в клетках нескольких часто генетически неоднородных ядер происходит переход их, ядер, из одного отрезка мицелия в другой путем образования анастамозов или слияния гиф. Однако слияния ядер при этом не происходит. Появление в клетках отсутствующих ранее ядер является основой адаптивной изменчивости.
Слияние ядер после перехода их в другую клетку называется парасексуальным процессом. Возникшие при этом диплоидные ядра способны размножаться, причем возможна митотическая рекомбинация и за счет этого перестройка генетического материала.

В отличие от вегетативного мицелия, имеющего весьма однообразное строение, типы спороношения у грибов характерно различаются. Часто один и тот же гриб может иметь несколько спороношений: бесполые, которых иногда бывает несколько, и половые. Те и другие чередуются, следуя одно за другим. Наличие нескольких типов спороношений у одного и того же вида гриба называется плеоморфизмом. Если не знать связи между отдельными спороношениями, то каждое из них можно принять за самостоятельный вид гриба. Для определения систематического положения гриба основное значение имеет половое спороношение: у низших грибов — форма полового процесса, число жгутиков подвижной стадии; у высших грибов — характер образования плодовых тел, их форма, строение и т. д.


5 вопрос: Классификация грибов.

На основании типов полового процесса, характера жгутикования у подвижных стадий (зооспор и гамет), развития спор полового размножения и других признаков грибы подразделяют на основные классы.

            Грибы отнесены к царству Fungi (Mycota), подразделяемому на отделы Myxomycota (грибы-слизевики) и Eumycota (истинные грибы), которые включают 7 классов:

1)Хитридиомицеты (Chytridiomycetes)

2)Гифохитридиомицеты (Hyphochytridiomycetes)

3) Оомицеты (Oomycetes)

4)Зигомицеты (Zygomycetes)

5)Аскомицеты (Ascomycetes)

6)Базидиомицеты (Basidiomycetes)

7)Дейтеромицеты (Deuteromycetes)

  Медицинское значение имеют 4 класса: зигомицеты, аскомицеты, базидиомицетыи дейтеромицеты..

Не имеют медицинского значения хитридиомицеты (тип Chytridiomycota) - водные сапрофитные грибы, поражающие водоросли. Различают совершенные и несовершенные грибы. Совершенные грибы имеют половой способ размножения; к ним относят зигомицеты (Zygomycota), аскомицеты (Ascomycota) и базидиомицеты (Basidiomycota). Несовершенные грибы имеют только бесполый способ размножения; к ним относят дейтеромицеты (Deiteromycota).

К низсшим грибам относятся: хитридиомицеты, гифохитридиомицеты, оомицеты, зигомицеты. К высшим грибам относятся: аскомицеты, базидиомицеты, дейтеромицеты.
1) Хитридиомицеты (Chytridiomycetes). Мицелий этих грибов развит слабо или отсутствует. Зооспоры и гаметы с одним задним бичевидным жгутиком. Это водные грибы, ведущие сапрофитический образ жизни или поражающие водоросли.

2) Гифохитриомицеты (Hyphochytriomycetes). Мицелий развит слабо или отсутствует. Зооспоры и гаметы с одним передним перистым жгутиком. Имеют сходство с хитридиомицетами и оомицетами.

3) Оомицеты (Oomycetes). Мицелий хорошо развит. Неклеточный. Зооспоры с двумя неодинаковыми жгутиками — перистым и бичевидным. Половой процесс — оогамия. 4)Зигомицеты (Zygomycetes). Зигомицеты относятся к низшим грибам (мицелий несептированный). Мицелий хорошо развит, за немногими исключениями неклеточный. Подвижные стадии отсутствуют. Бесполое размножение у большинства видов с помощью неподвижных спорангиеспор, образуемых внутри спорангиев. Реже — с образованием конидий. Половой процесс — зигогамия (слияние двух гаметангиев, по строению хорошо отличимых от вегетативных гиф, на которых они образуются). Они включают представителей родов Mucor, Rhizopus, Rhizomucor, Absidia, Basidiobolus, Conidiobolus. Распространены в почве и воздухе. Могут вызывать зигомикоз (мукоромикоз) легких, головного мозга и других органов человека.

5) Аскомицеты (Ascomycetes) (сумчатые грибы) имеют септированный мицелий (кроме одноклеточных дрожжей). Свое название они получили от основного органа плодоношения - сумки, или аска, содержащего 4 или 8 гаплоидных половых спор (аскоспор).

К аскомицетам относятся отдельные представители (телеоморфы) родов Aspergillus и Penicillium. Большинство грибов родов Aspergillus, Penicillium являются анаморфами, т.е. размножаются только бесполым путем с помощью бесполых спор - конидий и должны быть отнесены по этому признаку к несовершенным грибам. У грибов рода Aspergillus на концах плодоносящих гиф, конидиеносцах, имеются утолщения - стеригмы, фиалиды, на которых образуются цепочки конидий («леечная плесень»).

У грибов рода Penicillium (кистевик) плодоносящая гифа напоминает кисточку, так как из нее (на конидиеносце) образуются утолщения, разветвляющиеся на более мелкие структуры - стеригмы, фиалиды, на которых находятся цепочки конидий. Некоторые виды аспергилл могут вызывать аспергиллезы и афлатоксикозы, пенициллы могут вызывать пенициллиозы.

Представителями аскомицетов являются телеоморфы родов Trichophyton, Microsporum, Histoplasma, Blastomyces, а также дрожжи (род Saccharomyces, телеоморфы многих видов рода Candida). Дрожжи - одноклеточные грибы, утратившие способность к образованию истинного мицелия; имеют овальную форму клеток диаметром 3-15 мкм. Они размножаются почкованием, бинарным делением на две равные клетки или половым путем с образованием аскоспор. Заболевания, вызываемые некоторыми видами дрожжей, получили название дрожжевых микозов. К аскомицетам относятся возбудитель пневмоцистной пневмонии