Файл: Макарова_Информатика_2000.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.05.2024

Просмотров: 3041

Скачиваний: 6

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Информатика

К читателю

Предисловие

От всей души желаем вам успехов!

1.1. Информатизация общества

Опыт информатизации и перспективные идеи

1.2. Информационный потенциал общества

Рынок информационных продуктов и услуг

Правовое регулирование на информационном рынке

1.3. Информатика – предмет и задачи

Ключевые понятия

Вопросы для самопроверки

Литература

2 Глава. Измерение и представление информации

2.1. Информация и ее свойства

2.2. Классификация и кодирование информации

2.1. Информация и ее свойства

2.2. Классификация и кодирование информации

Фасетная система классификации

Дескрипторная система классификации

Система кодирования

Классификационное кодирование

Ключевые понятия

Вопросы для самопроверки

Литература

После изучения главы вы должны знать:

3.1. Информационные системы

Понятие информационной системы

Персонал организации

3.2. Структура и классификация информационных систем

Информационные системы для менеджеров среднего звена

3.3. Информационные технологии

Как соотносятся информационная технология и информационная система

3.4. Виды информационных технологий

Характеристика и назначение

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 4. Архитектура персонального компьютера

После изучения главы вы должны знать:

4.1. Информационно-логические основы построения

4.2. Функционально-структурная организация

4.3. Микропроцессоры

4.4. Запоминающие устройства пк

Накопители на жестких магнитных дисках

4.5. Основные внешние устройства пк

4.6. Рекомендации по выбору персонального компьютера

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 5. Состояние и тенденции развития эвм

После изучения главы вы должны знать:

5.1. Классификация эвм Классификация эвм по принципу действия

Классификация эвм по размерам и функциональным возможностям

5.2. Большие эвм

5.3. Малые эвм

5.4. Персональные компьютеры

5.5. Суперэвм

5.6. Серверы

5.7. Переносные компьютеры

5.8. Тенденции развития вычислительных систем

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 6. Компьютерные сети

После изучения главы вы должны знать:

6.1. Коммуникационная среда и передача данных

6.2. Архитектура компьютерных сетей

6.3. Локальные вычислительные сети

Управление взаимодействием устройств в сети

6.4. Глобальная сетьinternet

6.5. Локальная вычислительная сетьnovellnetware

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 7. Офисная техника

После изучения главы вы должны знать:

7.1. Классификация офисной техники

7.2. Средства изготовления, хранения, транспортирования и обработки документов

Средства транспортирования документов

7.3. Средства копирования и размножения документов

7.4. Средства административно-управленческой связи

Системы передачи недокументированной информации

Дейтефонная связь

7.5. Компьютерные системы в оргтехнике

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 8. Состояние и тенденции развития программного обеспечения

8.1. Программные продукты и их основные характеристики

8.2. Классификация программных продуктов

После изучения главы вы должны знать:

8.1. Программные продукты и их основные характеристики

8.2. Классификация программных продуктов

Сервисное программное обеспечение

Офисные ппп

Системы искусственного интеллекта

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 9. Операционная система ms dos

9.1. Основные понятия

9.2. Характеристика ms dos

9.3. Технология работы в ms dos

9.1. Основные понятия

9.2. Характеристикаmsdos

9.3. Технология работы вmsdos

Формат команды объединения нескольких файлов

Форматы команд для обмена данными между внешним устройством и файлом, хранящимся на диске

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 10. Norton commander – инструментарий работы в среде ms dos

После изучения главы вы должны знать:

10.1. Общие сведения

10.2. Работа с панелями информационного окна

10.3. Управление пакетом при помощи функциональных клавиш и ниспадающего меню

10.4. Вспомогательный инструментарий пакета

Ключевые понятия

Вопросы для самопроверки

Литература

После изучения главы вы должны знать:

11.1. Программы-архиваторы

11.2. Программы обслуживания магнитных дисков

Проблема фрагментации дисков

11.3. Антивирусные программные средства

Программы обнаружения и защиты от вирусов

Ключевые понятия

Вопросы для самопроверки

Литература

Глaba12. Операционные системыwindows95 иwindows98

После изучения главы вы должны знать:

12.1. Концепция операционных системwindows95 иwindows98

32-Разрядная архитектура

12.2. Объектно-ориентированная платформаwindows

Назначение Рабочего стола

12.3. Организация обмена данными

Внедрение объекта

12.4. Программные средстваwindows98

Комплекс программ Связь

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 13. Текстовый процессор

13.1. Базовые возможности

13.2. Работа с текстом

13.3. Работа издательских систем

После изучения главы вы должны знать:

13.1. Базовые возможности

13.2. Работа с текстом

13.3. Работа издательских систем

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 14. Табличный процессор

14.1. Основные понятия

14.2. Функциональные возможности табличных процессоров

14.3. Технология работы в электронной таблице

После изучения главы вы должны знать:

14.1. Основные понятия

Окно, рабочая книга, лист

Перемещение формул

14.2. Функциональные возможности табличных процессоров

Команды для работы с электронной таблицей как с базой данных

14.3. Технология работы в электронной таблице

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 15. Система управления базой данных

После изучения главы вы должны знать:

15.1. Основные понятия

15.2. Реляционный подход к построению инфологической модели

15.3. Функциональные возможности субд

15.4. Основы технологии работы в субд

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 16. Интеллектуальные системы

16.1. Введение в искусственный интеллект

16.2. Экспертные системы: структура и классификация

16.3. Технология разработки экспертных систем

После изучения главы вы должны знать:

16.1. Введение в искусственный интеллект

История развития искусственного интеллекта в России

16.2. Экспертные системы: структура и классификация

16.3. Технология разработки экспертных систем

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 17. Инженерия знаний

17.1. Теоретические аспекты получения знаний

17.2. Практические методы извлечения знаний

17.3. Структурирование знаний

После изучения главы вы должны знать:

17.1. Теоретические аспекты получения знаний

17.2. Практические методы извлечения знаний

17.3. Структурирование знаний

Ключевые понятия

Вопросы для самопроверки

Литература

Глава 18. Создание программного продукта

18.1. Методология проектирования программных продуктов

18.2. Структурное проектирование и программирование

18.3. Объектно-ориентированное проектирование

После изучения главы вы должны знать:

18.1. Методология проектирования программных продуктов

Этапы создания программных продуктов

1. Составление технического задания на программирование

2. Технический проект

3. Рабочая документация (рабочий проект)

4. Ввод в действие

18.2. Структурное проектирование и программирование

18.3. Объектно-ориентированное проектирование

Методика объектно-ориентированного проектирования

Ключевые понятия

Вопросы для самопроверки

Литература

После изучения главы вы должны знать:

19.1. Автоматизация работы пользователя в средеmicrosoftoffice

19.2. Создание приложений на языкеvisualbasicforapplications

19.3. Реляционные языки манипулирования данными

Ключевые понятия

Вопросы для самопроверки

Литература

Макарова Наталья Владимировна

Матвеев Леонид Анатольевич

Бройдо Владимир Львович и др.

Информатика

101000, Москва, ул. Покровка, 7

Глава 13. Текстовый процессор 425

Интеллектуальные роботы

Роботы – это электромеханические устройства, предназначенные для автоматизации человеческого труда.

Идея создания роботов исключительно древняя. Само слово появилось в 20-х гг. Его автор – чешский писатель Карел Чапек. Со времени создания сменилось несколько поколений роботов.

Роботы с жесткой схемой управления. Практически все современные промышленные роботы принадлежат к первому поколению. Фактически это программируемые манипуляторы.

Адаптивные роботы с сенсорными устройствами. Есть образцы таких роботов, но в промышленности они пока не используются.

Самоорганизующиеся, или интеллектуальные, роботы. Это конечная цель развития робототехники. Основная проблема при создании интеллектуальных роботов – проблема машинного зрения.

В настоящее время в мире изготавливается более 60 тыс. роботов в год.

Специальное программное обеспечение

В рамках этого направления разрабатываются специальные языки для решения задач невычислительного плана. Эти языки ориентированы на символьную обработку информации – LISP, PROLOG, SMALLTALK, РЕФАЛ и др. Помимо этого создаются пакеты прикладных программ, ориентированные на промышленную разработку интеллектуальных систем, или программные инструментарии искусственного интеллекта, например KEE, ARTS[10]. Достаточно популярно создание так называемых пустых экспертных систем, или "оболочек", – EXSYS, M1 и др., в которых можно наполнять базы знаний, создавая различные системы.

Обучение и самообучение

Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление знаний на основе анализа и обобщения данных. Включает обучение по примерам (или индуктивное), а также традиционные подходы распознавания образов.

ДАННЫЕ И ЗНАНИЯ

При изучении интеллектуальных систем традиционно возникает вопрос – что же такое знания и чем они отличаются от обычных данных, десятилетиями обрабатываемых ЭВМ. Можно предложить несколько рабочих определений, в рамках которых это становится очевидным.

Данные – это отдельные факты, характеризующие объекты, процессы и явления в предметной области, а также их свойства.


При обработке на ЭВМ данные трансформируются, условно проходя следующие этапы:

данные как результат измерений и наблюдений;

данные на материальных носителях информации (таблицы, протоколы, справочники);

модели (структуры) данных в виде диаграмм, графиков, функций;

данные в компьютере на языке описания данных;

базы данных на машинных носителях.

Знания связаны с данными, основываются на них, но представляют результат мыслительной деятельности человека, обобщают его опыт, полученный в ходе выполнения какой-либо практической деятельности. Они получаются эмпирическим путем.

Знания – это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области.

При обработке на ЭВМ знания трансформируются аналогично данным:

знания в памяти человека как результат мышления;

материальные носители знаний (учебники, методические пособия);

поле знаний - условное описание основных объектов предметной области, их атрибутов и закономерностей, их связывающих;

знания, описанные на языках представления знаний (продукционные языки, семантические сети, фреймы – см. далее);

базы знаний.

Часто используются такие определения знаний:

знания – это хорошо структурированные данные, или данные о данных, или метаданные.

Существует множество способов определять понятия. Один из широко применяемых способов основан на идее интенсионала. Интенсионал понятия – это определение через понятие более высокого уровня абстракции с указанием специфических свойств. Этот способ определяет знания. Другой способ определяет понятие через перечисление понятий более низкого уровня иерархии или фактов, относящихся к определяемому. Это есть определение через данные, или экстенсионал понятия.

Пример 16.1. Понятие "персональный компьютер". Его интенсионал: "Персональный компьютер – это дружественная ЭВМ, которую можно поставить на стол и купить менее чем за $2000 - 3000".

Экстенсионал этого понятия: "Персональный компьютер – это Mac, IBM PC, Sinkler...".

Для хранения данных используются базы данных (для них характерны большой объем и относительно небольшая удельная стоимость информации), для хранения знаний – базы знаний (небольшого объема, но исключительно дорогие информационные массивы). База знаний – основа любой интеллектуальной системы.


Знания могут быть классифицированы по следующим категориям:

поверхностные – знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области;

глубинные - абстракции, аналогии, схемы, отображающие структуру и процессы в предметной области.

Современные экспертные системы работают в основном с поверхностными знаниями. Это связано с тем, что на данный момент нет адекватных моделей, позволяющих работать с глубинными знаниями.

Кроме того, знания можно разделить на процедурные и декларативные. Исторически первичными были процедурные знания, т.е. знания, "растворенные" в алгоритмах. Они управляли данными. Для их изменения требовалось изменять программы. Однако с развитием искусственного интеллекта приоритет данных постепенно изменялся, и все большая часть знаний сосредоточивалась в структурах данных (таблицы, списки, абстрактные типы данных), т.е. увеличивалась роль декларативных знаний.

Сегодня знания приобрели чисто декларативную форму, т.е. знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и понятных неспециалистам.

Существуют десятки моделей (или языков) представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:

продукционные;

семантические сети;

фреймы;

формальные логические модели.

МОДЕЛИ ПРЕДСТАВЛЕНИЯ ЗНАНИЙ

Продукционная модель

Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если (условие), то (действие).

Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием – действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы).

При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения – к данным). Данные – это исходные факты, на основании которых запускается машина вывода – программа, перебирающая правила из базы.


Пример 16.2. Имеется фрагмент базы знаний из двух правил:

П1: Если "отдых – летом" и "человек – активный", то "ехать в горы".

П2: Если "любит солнце", то "отдых летом".

Предположим, в систему поступили данные – "человек активный" и "любит солнце".

Прямой вывод – исходя из данных, получить ответ.

1-й проход.

Шаг 1. Пробуем П1, не работает (не хватает данных "отдых – летом").

Шаг 2. Пробуем П2, работает, в базу поступает факт "отдых – летом".

2-й проход.

Шаг 3. Пробуем П1, работает, активируется цель "ехать в горы", которая и выступает как совет, который дает ЭС.

Обратный вывод – подтвердить выбранную цель при помощи имеющихся правил и данных.

1-й проход.

Шаг 1. Цель – "ехать в горы": пробуем П1 – данных "отдых – летом" нет, они становятся новой целью, и ищется правило, где она в правой части.

Шаг 2. Цель "отдых – летом": правило П2 подтверждает цель и активирует ее.

2-й проход.

Шаг 3. Пробуем П1, подтверждается искомая цель.

Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода.

Имеется большое число программных средств, реализующих продукционный подход (язык OPS 5 [8]; "оболочки" или "пустые" ЭС – EXSYS [10], ЭКСПЕРТ [2]; инструментальные системы ПИЭС [11] и СПЭИС [3] и др.), а также промышленных ЭС на его основе (ФИАКР [8]) и др.

Семантические сети

Термин семантическая означает смысловая, а сама семантика – это наука, устанавливающая отношения между символами и объектами, которые они обозначают, т.е. наука, определяющая смысл знаков.

Семантическая сеть – это ориентированный граф, вершины которого – понятия, а дуги – отношения между ними.

Понятиями обычно выступают абстрактные или конкретные объекты, а отношения – это связи типа: "это" ("is"), "имеет частью" ("has part"), "принадлежит", "любит". Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:

класс – элемент класса;

свойство – значение;


пример элемента класса.

Можно ввести несколько классификаций семантических сетей. Например, по количеству типов отношений:

однородные (с единственным типом отношений);

неоднородные (с различными типами отношений).

По типам отношений:

бинарные (в которых отношения связывают два объекта);

n-арные (в которых есть специальные отношения, связывающие более двух понятий).

Наиболее часто в семантических сетях используются следующие отношения:

связи типа "часть-целое" ("класс-подкласс", "элемент-множество" и т.п.);

функциональные связи (определяемые обычно глаголами "производит", "влияет"...);

количественные (больше, меньше, равно...);

пространственные (далеко от, близко от, за, под, над ...);

временные (раньше, позже, в течение...);

атрибутивные связи ( иметь свойство, иметь значение...);

логические связи (и, или, не) и др.

Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, соответствующей поставленному вопросу.

Пример 16.3. На рис. 16.1 изображена семантическая сеть. В качестве вершин – понятия: Человек, Иванов, Волга, Автомобиль, Вид транспорта, Двигатель.

Рис. 16.1. Семантическая сеть

Основное преимущество этой модели – в соответствии современным представлениям об организации долговременной памяти человека. Недостаток модели – сложность поиска вывода на семантической сети.

Для реализации семантических сетей существуют специальные сетевые языки, например NET[12] и др. Широко известны экспертные системы, использующие семантические сети в качестве языка представления знаний – PROSPECTOR, CASNET, TORUS [8, 10].

Фреймы

Фрейм (англ. frame – каркас или рамка) предложен М. Минским в 70-е гг. как структура знаний для восприятия пространственных сцен. Эта модель, как и семантическая сеть, имеет глубокое психологическое обоснование.

Под фреймом понимается абстрактный образ или ситуация. В психологии и философии известно понятие абстрактного образа. Например, слово "комната" вызывает у слушающих образ комнаты: "жилое помещение с четырьмя стенами, полом, потолком, окнами и дверью, площадью 6-20 м2 ". Из этого описания ничего нельзя убрать (например, убрав окна, мы получим уже чулан, а не комнату), но в нем есть "дырки", или "слоты", – это незаполненные значения некоторых атрибутов – количество окон, цвет стен, высота потолка, покрытие пола и др.