Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 633

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Роджер пенроуз

1.2. Спасут ли роботы этот безумный мир?

1.3. Вычисление и сознательное мышление

1.4. Физикализм и ментализм

1.5. Вычисление: нисходящие и восходящие процедуры

1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?

1.7. Хаос

1.8. Аналоговые вычисления

1.9. Невычислительные процессы

1.10. Завтрашний день

1.11. Обладают ли компьютеры правами и несут ли ответственность?

1.12. «Осознание», «понимание», «сознание», «интеллект»

1.13. Доказательство Джона Серла

1.14. Некоторые проблемы вычислительной модели

1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?

1.16. Доказательство на основании теоремы Гёделя

1.17. Платонизм или мистицизм?

1.18. Почему именно математическое понимание?

1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?

1.20. Мысленная визуализация и виртуальная реальность

1.21. Является ли невычислимым математическое воображение?

Примечания

2 Геделевское доказательство

2.1. Теорема Гёделя и машины Тьюринга

2.2. Вычисления

2.3. Незавершающиеся вычисления

2.4. Как убедиться в невозможности завершить вычисление?

2.5. Семейства вычислений; следствие Гёделя — Тьюринга

2.6. Возможные формальные возражения против

2.7. Некоторые более глубокие математические соображения

2.8. Условие -непротиворечивости

2.9. Формальные системы и алгоритмическое доказательство

2.10. Возможные формальные возражения против (продолжение)

Примечания

Приложение а: геделизирующая машина тьюринга в явном виде

3 О невычислимости в математическом мышлении

3.1. Гёдель и Тьюринг

О психофизи(ологи)ческой проблеме

Р.Пенроуз. Тени ума: в поисках потерянной науки о сознании. Penrose r. Shadows of the mind: a search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.

В зависимости от познаваемости предположительно лежа­щей в основе математического понимания алгоритмической про­цедуры F (будь то обоснованной или нет), следует четко выделять три совершенно различных случая. Процедураможет быть:

I сознательно познаваемой, причем познаваем также и тот факт, что именно эта алгоритмическая процедура ответ­ственна за математическое понимание;

II сознательно познаваемой, однако тот факт, что математиче­ское понимание основывается именно на этой алгоритмиче­ской процедуре, остается как неосознаваемым, так и непо­знаваемым;

III неосознаваемой и непознаваемой.

Рассмотрим сначала полностью сознательный случай I. По­скольку и сам алгоритм, и его роль являются познаваемыми, мы вполне можем счесть, что мы о них уже знаем. В самом деле, ничто не мешает нам вообразить, что все наши рассуждения име­ют место уже после того, как мы получили в наше распоряжение соответствующее знание — ведь слово «познаваемый» как раз и подразумевает, что такое время, по крайней мере, в принципе, когда-нибудь да наступит. Итак, алгоритмнам известен, при этом известна и его основополагающая роль в математическом понимании. Как мы уже видели (§ 2.9), такой алгоритм эффектив­но эквивалентен формальной системеИными словами, полу­чается, что математическое понимание — или хотя бы понимание математики каким-то отдельным математиком — эквивалентно выводимости в рамках некоторой формальной системы F. Если мы хотим сохранить хоть какую-то надежду удовлетворить вы­воду XX, к которому нас столь неожиданно привели изложенные в предыдущей главе соображения, то придется предположить, что система F является необоснованной. Однако, как это ни странно, необоснованность в данном случае ситуацию ничуть не меняет, поскольку, в соответствии с I, известная формальная си­стема F является действительно известной, то есть любой ма­тематик знает и, как следствие, верит, что именно эта система лежит в основе его (или ее) математического понимания. А такая вера автоматически влечет за собой веру (пусть и ошибочную) в обоснованность системы F. (Согласитесь, крайне неразумно выглядит точка зрения, в соответствии с которой математик поз­воляет себе не верить в самые фундаментальные положения соб­ственной заведомо неопровержимой системы взглядов.) Незави­симо от того, является ли система F действительно обоснован­ной, вера в ее обоснованность уже содержит в себе веру в то, что утверждение G(F) (или, как вариант, omega(F), см. §2.8) ис­тинно. Однако, поскольку теперь мы полагаем (исходя из веры в справедливость теоремы Гёделя), что истинность утвержде­ния G(F) в рамках системы F недоказуема, это противоречит предположению о том, что система F является основой всякого (существенного для рассматриваемого случая) математического понимания. (Это соображение одинаково справедливо как для отдельных математиков, так и для всего математического сооб­щества в целом; его можно применять индивидуально к любому из всевозможных алгоритмов, предположительно составляющих основу мыслительных процессов того или иного математика. Бо­лее того, согласно предварительной договоренности, для нас на данный момент важна применимость этого соображения лишь в той области математического понимания, которая имеет отно­шение к доказательству II1-высказываний.) Итак, невозможно знать наверняка, что некий гипотетический известный необосно­ванный алгоритм F, предположительно лежащий в основе мате­матического понимания, и в самом деле выполняет эту роль. Сле­довательно, случай I исключается, независимо от того, является система F обоснованной или нет. Если система F сама по себе познаваема, то следует рассмотреть возможность II, суть которой заключается в том, что система F все же может составлять основу математического понимания, однако узнать об этой ее роли мы не в состоянии. Остается в силе и возможность III: сама система является как неосознаваемой, так и непознаваемой.


На данный момент мы достигли следующего результата: слу­чай I (по крайней мере, в контексте полностью нисходящих ал­горитмов) как сколько-нибудь серьезную возможность рассмат­ривать нельзя; тот факт, что системаможет в действитель­ности оказаться и необоснованной, как выяснилось, сути про­блемы ничуть не меняет. Решающим фактором здесь является невозможность точно установить, является та или иная гипоте­тическая система(независимо от ее обоснованности) основой для формирования математических убеждений или же нет. Дело не в непознаваемости самого алгоритма, но в непознаваемости того факта, что процесс понимания действительно происходит в соответствии с данным алгоритмом.

3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание?

Перейдем к случаю II и попытаемся серьезно рассмотреть возможность того, что математическое понимание на деле экви­валентно некоторому сознательно познаваемому алгоритму либо формальной системе, однако эквивалентность эта принципиаль­но непознаваема. Иными словами, даже при условии познавае­мости той или иной гипотетической формальной системымы никоим образом не можем убедиться в том, что именно эта кон­кретная система действительно лежит в основе нашего матема­тического понимания. Правдоподобно ли такое предположение?

Если упомянутая гипотетическая формальная системане является уже известной, то в этом случае нам, как и ранее, следует полагать, что она может, по крайней мере, в принципе, когда-нибудь таковой стать. Вообразим, что этот светлый день наконец наступил, и допустим, что в нашем распоряжении име­ется точное и подробное описание этой самой системы. Предпо­лагается, что формальная система, будучи, возможно, крайне замысловатой, все же достаточно проста для того, чтобы мы ока­зались способны, по крайней мере, в принципе, постичь ее на вполне сознательном уровне. При этом нам не позволено испы­тывать уверенность в том, что системадействительно целиком и полностью охватывает всю совокупность наших твердых математических убеждений и интуитивных озарений (по край­ней мере в том, что касается-высказываний). Это, вообще-то вполне логичное предположение оказывается на деле в высшей степени неправдоподобным, в причинах чего мы и попытаемся разобраться. Более того, несколько позднее я покажу, что даже будь оно истинным, это не принесло бы никакой радости тем ИИ-энтузиастам, которые видят смысл жизни в создании робота-математика. Мы еще поговорим об этом в конце данного раздела и — более подробно — в §§ 3.15 и 3.29.


Дабы подчеркнуть тот факт, что существование подобной си­стемы F и в самом деле следует полагать логически возможным, вспомним о «машине для доказательства теорем», возможности создания которой, согласно Гёделю, логически исключить нельзя (см. цитату в §3.1). В сущности, такую «машину», как я поясню ниже, как раз и можно представить в виде некоторой алгоритми­ческой процедуры F, соответствующей вышеприведенным пунк­там II или III. Как отмечает Гёдель, его гипотетическая машина для доказательства теорем может быть «эмпирически реализо­вана», что соответствует требованию «сознательной познаваемо­сти» процедуры F в случае II; если же подобная реализация ока­зывается невозможной, то мы, по сути, имеем дело со случаем III.

На основании своей знаменитой теоремы Гёдель утверждал, что невозможно доказать «эквивалентность» процедуры F(или, что то же самое, формальной системысм. §2.9) «математи­ческой интуиции» (см. ту же цитату). В определении случая II (и, как следствие, III) я сформулировал это фундаментальное ограничение, налагаемое на, несколько по-иному: «Тот факт, что математическое понимание основывается именно на этой ал­горитмической процедуре, остается как неосознаваемым, так и непознаваемым».

Это ограничение (необходимость в котором следует из об­основанного в §3.2 исключения случая I) со всей очевидностью приводит к невозможности показать, что процедураэквива­лентна математической интуиции, поскольку посредством подоб­ной демонстрации мы могли бы однозначно убедиться в том, что процедура действительно выполняет ту роль, о самом факте выполнения которой мы предположительно не в состоянии ни­чего знать. И наоборот, если бы эта самая роль процедуры (роль фундаментального алгоритма, в соответствии с которым осуществляется постижение математических истин) допускала осознанное познание (в том смысле, что мы могли бы в полной мере постичь, как именно процедуравыполняет эту свою роль), то нам пришлось бы признать и обоснованность. Ибо если мы не допускаем, что процедурацеликом и полностью обосно­вана, то это означает, что мы отвергаем какие-то ее следствия. А ее следствиями являются как раз те математические положения (или хотя бы только-высказывания), которые мы полагаем-таки истинными. Таким образом знание роли процедурырав­нозначно наличию доказательствахотя такое «доказатель­ство» и нельзя считать формальным доказательством в рамках некоторой заранее заданной формальной системы.


Отметим также, что истинные-высказывания можно рас­сматривать в качестве примеров тех самых «корректных теорем конечной теории чисел», о которых говорил Гёдель. Более то­го, если понятие «конечной теории чисел» включает в себя-операцию «отыскания наименьшего натурального числа, обла­дающего таким-то свойством», в каковом случае оно включает в себя и процедуры, выполняемые машинами Тьюринга (см. ко­нец § 2.8), то тогда частью конечной теории чисел следует считать все-высказывания. Иными словами, получается, что доказа­тельство гёделевского типа не дает четкого способа исключить из рассмотрения случай II, руководствуясь одними лишь строго логическими основаниями — по крайней мере, до тех пор, пока мы полагаем, что Гёдель был прав.

С другой стороны, можно задаться вопросом об общем правдоподобии предположения II. Рассмотрим, что повлечет за собой существование познаваемой процедурынепознаваемым образом эквивалентной человеческому математическому пони­манию (заведомо непогрешимому). Как уже отмечалось, ничто не мешает нам мысленно перенестись в некое будущее время, в ко­тором эта процедура окажется обнаружена и подробно описана. Известно также (см. §2.7), что формальная система задается в виде некоторого набора аксиом и правил действия. Теоремы системыпредставляют собой утверждения (иначе называемые «положениями»), выводимые из аксиом с помощью правил дей­ствия, причем все теоремы можно сформулировать посредством того же набора символов, который используется для выражения аксиом. А теперь представим себе, что теоремы системыв точ­ности совпадают с теми положениями (сформулированными с помощью упомянутых символов), неопровержимую истинность ко­торых математики, в принципе, способны самостоятельно уста­новить.

Допустим на минуту, что перечень аксиом системыявля­ется конечным. Сами же аксиомы суть не что иное, как част­ные случаи соответствующих теорем. Однако неопровержимую истинность каждой теоремы мы можем, в принципе, постичь по­средством математического понимания и интуиции. Следователь­но, каждая аксиома в отдельности должна выражать нечто та­кое, что по крайней мере, в принципе, постижимо посредством этого самого математического понимания. Иными словами, для каждой отдельной аксиомы когда-нибудь непременно настанет (либо принципиально возможно, что настанет) время, когда ее неопровержимая истинность будет однозначно установлена. Так, рассматривая одну за другой, мы сможем устанавливать истин­ность любой отдельно взятой аксиомы системыТаким образом, в конечном итоге будет установлена (либо принципиально воз­можно, что будет установлена) неопровержимая истинность всех отдельно взятых аксиом. Соответственно, настанет время, когда будет установлена неопровержимая истинность всей совокупно­сти аксиом системыв целом.


А как быть с правилами действия? Можем ли мы предпо­ложить, что настанет время, когда будет однозначно установлена неопровержимая обоснованность этих правил? Во многих фор­мальных системах правилами действия служат достаточно про­стые утверждения, каждое из которых с очевидностью «неопро­вержимо», например: «Если установлено, что высказывание является теоремой и высказываниеявляется теоремой, то можно заключить, что высказываниетакже является те­оремой» (относительно символа«следует» см. НРК, с. 393, или [222]). Признать неоспоримую справедливость таких пра­вил совсем не трудно. С другой стороны, среди правил действия встречаются и гораздо более тонкие отношения, справедливость которых вовсе не так очевидна; прежде чем прийти к однознач­ному решению относительно того, считать то или иное такое пра­вило «неопровержимо обоснованным» или нет, нам, возможно, потребуется прибегнуть к весьма подробному и тщательному ана­лизу. Более того, как мы вскоре убедимся, в наборе правил дей­ствия формальной системынеизбежно имеются такие правила, неоспоримая обоснованность которых не может быть достоверно установлена ни одним математиком — причем мы все еще пола­гаем, что число аксиом в системеконечно.

В чем же причина? Перенесемся в воображении в то са­мое время, когда уже однозначно установлена неопровержимая справедливость всех аксиом формальной системыПеред нами открывается замечательная возможность без помех рассмотреть всю системуцеликом. Попробуем допустить, что все правила действия системыможно также считать справедливыми безо всяких оговорок. Хотя предполагается, что мы еще не можем знать наверняка, что системадействительно включает в себя всю математику, которая в принципе доступна человеческому по­ниманию и интуиции, мы должны к настоящему моменту, по мень­шей мере, уже убедиться в том, что системаявляется неоспори­мо обоснованной, поскольку справедливость как ее аксиом, так и ее правил действия безоговорочно нами принимается. Следова­тельно, мы также должны уже быть уверены в том, что система непротиворечива. Не забываем, разумеется, и о том, что, в силу этой непротиворечивости, утверждениетакже должно быть истинным — более того, неопровержимо истинным! Однако, поскольку предполагается, что системафактически (хотя нам об этом неизвестно) включает в себя всю совокупность того, что безоговорочно доступно нашему пониманию, утверждение должно на деле представлять собой теорему системыСогласно теореме Гёделя, такое, вообще говоря, возможно только в том случае, если формальная системапротиворечива. Если же система F противоречива, то одной из теорем этой системы явля­ется утверждениеСледовательно, утверждение должно быть, в принципе, доступно нашему математическому по­ниманию — очевидное противоречие!