Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 656

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Роджер пенроуз

1.2. Спасут ли роботы этот безумный мир?

1.3. Вычисление и сознательное мышление

1.4. Физикализм и ментализм

1.5. Вычисление: нисходящие и восходящие процедуры

1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?

1.7. Хаос

1.8. Аналоговые вычисления

1.9. Невычислительные процессы

1.10. Завтрашний день

1.11. Обладают ли компьютеры правами и несут ли ответственность?

1.12. «Осознание», «понимание», «сознание», «интеллект»

1.13. Доказательство Джона Серла

1.14. Некоторые проблемы вычислительной модели

1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?

1.16. Доказательство на основании теоремы Гёделя

1.17. Платонизм или мистицизм?

1.18. Почему именно математическое понимание?

1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?

1.20. Мысленная визуализация и виртуальная реальность

1.21. Является ли невычислимым математическое воображение?

Примечания

2 Геделевское доказательство

2.1. Теорема Гёделя и машины Тьюринга

2.2. Вычисления

2.3. Незавершающиеся вычисления

2.4. Как убедиться в невозможности завершить вычисление?

2.5. Семейства вычислений; следствие Гёделя — Тьюринга

2.6. Возможные формальные возражения против

2.7. Некоторые более глубокие математические соображения

2.8. Условие -непротиворечивости

2.9. Формальные системы и алгоритмическое доказательство

2.10. Возможные формальные возражения против (продолжение)

Примечания

Приложение а: геделизирующая машина тьюринга в явном виде

3 О невычислимости в математическом мышлении

3.1. Гёдель и Тьюринг

О психофизи(ологи)ческой проблеме

Р.Пенроуз. Тени ума: в поисках потерянной науки о сознании. Penrose r. Shadows of the mind: a search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.

Впрочем, полагаю, в данном случае крайне маловероятно, что многим математикам удалось бы в течение сколько-нибудь длительного срока наслаждаться той свободой умопостроений (в отношении бесконечных множеств), какую предоставляла си­стема Фреге. Причина в том, что парадоксы типа парадокса Рассела довольно легко обнаружить. Можно представить себе какой-нибудь гораздо более тонкий парадокс, например, такой, что неявным образом содержится в тех или иных полагаемых на­ми на данный момент неопровержимо истинными математических процедурах — парадокс, о котором никто не узнает еще, быть может, многие века. Необходимость в смене привычных правил мы осознаем лишь тогда, когда такой парадокс наконец себя про­явит. Короче говоря, наша математическая интуиция не зиждется на каких-то непреходящих в веках установлениях, но непрерывно меняется под сильным воздействием идей, которые прекрасно «работали» прежде, и соображений, последствия применения которых пока что «сходят нам с рук». Такая точка зрения отнюдь не исключает возможности существования в основе нашего те­перешнего математического понимания некоего алгоритма (или формальной системы), однако этот алгоритм не является чем-то неизменным, по мере обнаружения новых данных он подвергает­ся непрерывной модификации. К изменяющимся алгоритмам мы еще вернемся несколько позднее где и убедимся в том, что это по-прежнему все те же алгоритмы, только в ином обличье.

Разумеется, с моей стороны было бы наивным отрицать тот факт, что в методах, которые применяют в своей работе матема­тики, нередко присутствует элемент «доверия» процедуре, если она «до сих пор, кажется, работает». В моей собственной мате­матической практике такие предварительные, ориентировочные, нечеткие соображения составляют в общей совокупности рас­суждений весьма заметный процент. Однако они, как правило, обретаются в той области, которая «отвечает» за нащупывание нового, еще не сформировавшегося понимания, а никак не в той, где мы «складываем» неопровержимо, на наш взгляд, установ­ленные истины. Я очень сомневаюсь, что сам Фреге так уж ка­тегорически полагал свою систему абсолютно неопровержимой, даже не подозревая еще о парадоксе, о котором написал ему Рассел. Система суждений столь общего характера, что бы ни думал по ее поводу автор, всегда выдвигается на всеобщее обо­зрение с некоторой настороженностью. Лишь после длительного «периода осмысления» можно будет полагать, что она достигла, наконец, «уровня неопровержимости». Имея же дело с системой настолько общей, как система Фреге, в любом случае, как мне кажется, следует употреблять выражения вида «полагая систему Фреге обоснованной, можно считать справедливым то-то и то-то», а не просто утверждать эти самые «то-то и то-то» без упо­мянутой оговорки. (См. также комментарии к возражениям и.


Возможно, в настоящее время математики стали более осто­рожными в отношении того, что они готовы рассматривать как «неопровержимую истину» — эпоха осторожности сменила эпо­ху отчаянной дерзости (среди примеров которой работа Фре­ге занимает далеко не последнее место), пришедшуюся на ко­нецстолетия. С выходом на сцену парадокса Рассела и про­чих ему подобных необходимость в такой осторожности прояв­ляется особенно наглядно. Что же касается дерзости, то она, по большей части, уходит корнями в те времена, когда математи­ки начали потихоньку осознавать всю мощь канторовой теории бесконечных чисел и бесконечных множеств, выдвинутой им в начале того жевека. (Следует, впрочем, отметить, что сам Кантор знал о парадоксах, подобных парадоксу Рассела, — за­долго до того, как сам Рассел обнаружил тот, что был назван его именем), — и предпринимал попытки усовершенствовать свою формулировку с тем, чтобы, по возможности, учитывать подобные проблемы.) Цели и характер моих рассуждений на этих страницах также, несомненно, требуют крайней осторожности. И я безмерно рад, что нам с вами приходится иметь дело только с утверждениями, истинность которых неопровержима, и что нет никакой необходимости влезать в дебри бесконечных множеств и прочих сомнительных понятий. Важно помнить, что где бы мы ни провели черту, полученные с помощью доказательства Гёделя утверждения всегда остаются в рамках неопровержимо истин­ного (см. также комментарий к возражению). Само по себе доказательство Гёделя (—Тьюринга) не имеет абсолютно никако­го отношения к вопросам, связанным с сомнительным существо­ванием бесконечных множеств определенного сорта. Неясности, касающиеся тех самых исключительно вольных рассуждений, столь занимавших Кантора, Фреге и Рассела, ничуть не занима­ют нас — до тех пор, пока они остаются «сомнительными», не претендуя на звание «неопровержимых». Коль скоро мы со всем этим согласны, я никак не могу счесть правдоподобным допуще­ние, согласно которому математики действительно использу­ют в качестве основы для своего математического понимания и убеждений какую-либо необоснованную формальную систему F. Я надеюсь, читатель согласится с тем, что вне зависимости от того, возможна такая ситуация или нет, она, во всяком случае, невероятна.

Наконец, в связи с возможной необоснованностью нашей гипотетической системы, вернемся ненадолго к другим аспек­там человеческой «неточности», о которых мы говорили выше (см. комментарии к возражениям). Прежде всего повторюсь, нас в данном случае интересуют не вдохновение, не гениальные догадки и не эвристические критерии, способные привести математика к великим открытиям, но лишь понимание и проникновение в суть, на фундаменте которых покоятся его неопровержимые убеждения в отношении математических истин. Эти убеждения могут оказаться всего-навсего результатом озна­комления с рассуждениями других математиков, и в этом слу­чае о каких бы то ни было элементах математического открытия говорить, разумеется, не приходится. А вот когда мы нащупы­ваем путь к какому-то подлинному открытию, и впрямь весьма важно дать размышлениям свободу, не ограничивая их изначаль­но необходимостью в полной достоверности и точности (у меня сложилось впечатление, что именно это имел в виду Тьюринг в приведенной выше цитате, см.). Однако когда перед нами встает вопрос о принятии или отклонении тех или иных доводов в поддержку неопровержимой истинности выдвигаемого математи­ческого утверждения, необходимо полагаться лишь на понимание и проницательность (нередко в сопровождении громоздких вы­числений), которым ошибки принципиально не свойственны.


Я вовсе не хочу сказать, что математики, полагающиеся на понимание, не делают ошибок, — делают, и даже часто: понима­ние тоже можно применить некорректно. Безусловно, математики допускают ошибки и в рассуждениях, и в понимании, а также в сопутствующих вычислениях. Однако склонность к совершению подобных ошибок, в сущности, не усиливает их способности к пониманию (хотя я, пожалуй, могу представить себе, каким об­разом подобные случайные обстоятельства могут порой привести человека к нежданному, скажем так, озарению). Что более важ­но — эти ошибки исправимы, их можно распознать как ошиб­ки, когда на них укажет какой-либо другой математик (или даже впоследствии сам автор). Совсем иначе обстоит дело, когда пони­мание математика контролируется некоей внутренне ошибочной формальной системойв рамках такой системы невозможно распознать ее собственные ошибки. (Что касается возможно­сти существования самосовершенствующейся системы, которая модифицирует самое себя всякий раз, как обнаруживает в себе противоречие, то о ней мы поговорим несколько позднее, «на подступах» к противоречиюТам же мы и обнаружим, что и от такого предположения в данном случае пользы мало; см. также)

Ошибки несколько иного рода возникают при неверной фор­мулировке математического утверждения; в этом случае выдви­гающий утверждение математик, возможно, имеет в виду нечто совсем отличное от того, что он буквально утверждает. Впрочем, такие ошибки также исправимы и не имеют ничего общего с теми внутренними ошибками, причиной которых является понима­ние, опирающееся на необоснованную систему(Здесь уместно вспомнить фразу Фейнмана, которую мы цитировали в связи с возражением«Не слушайте, что я говорю; слушайте, что я имею в виду!»). Мы с вами здесь для того, чтобы выяснить, что, в принципе, может (либо не может) быть установлено каким угодно математиком (человеком); ошибки же, подобные только что рассмотренным, — т.е. исправимые ошибки — никакого от­ношения к этой проблеме не имеют. Важнейший, пожалуй, для всего нашего исследования момент: круг идей и понятий, доступ­ных математическому пониманию, непременно должен включать в себя центральную идею доказательства Гёделя—Тьюринга; на этом, собственно, основании мы и не рассматриваем всерьез воз­можность, а возможностьполагаем крайне невероятной. Как уже отмечалось выше (в комментарии к возражению), идея доказательства Гёделя—Тьюринга, безусловно, должна являться частью того, что, в принципе, в состоянии понять математик, даже если какое-то конкретное утверждение, на котором этот математик, возможно, основывается, ошибочно — лишь бы ошибка была исправимой.


С возможной «необоснованностью» предполагаемого алго­ритма математического понимания связаны и другие вопросы, о которых не следует забывать. Эти вопросы касаются проце­дур «восходящего» типа — таких, к примеру, как самоусовер­шенствующиеся алгоритмы, алгоритмы обучения (в том числе и искусственные нейронные сети), алгоритмы с дополнительными случайными компонентами, а также алгоритмы, операции кото­рых обусловлены внешним окружением, в котором функциониру­ют соответствующие алгоритмические устройства. Некоторые из упомянутых вопросов были затронуты ранее (см. комментарий к возражению), подробнее же мы рассмотрим их при обсужде­нии случая, к каковому обсуждению мы как раз и приступаем.

3.5. Может ли алгоритм быть непознаваемым?

В соответствии с вариантом, математическое понимание представляет собой результат выполнения некоего непознавае­мого алгоритма. Что же конкретно означает определение «непо­знаваемый» применительно к алгоритму? В предшествующих разделах настоящей главы мы занимались вопросами принципи­альными. Так, утверждая, что неопровержимая истинность неко­торого-высказывания доступна математическому пониманию человека, мы, по сути, утверждали, что данное-высказывание постижимо в принципе, отнюдь не имея в виду, что каждый ма­тематик когда-нибудь да сталкивался с реальной демонстрацией его истинности. Применительно к алгоритму, однако, нам по­требуется несколько иная интерпретация термина «непознавае­мый». Я буду понимать его так: рассматриваемый алгоритм яв­ляется настолько сложным, что даже описание его практически неосуществимо.

Когда мы говорили о выводах, осуществляемых в рамках какой-то конкретной познаваемой формальной системы, или о предполагаемых результатах применения того или иного извест­ного алгоритма, рассуждения в терминах принципиально воз­можного или невозможного и в самом деле выглядели как нельзя более уместными. Вопросы возможности или невозможности вы­вода того или иного конкретного предположения из такой фор­мальной системы или алгоритма рассматривались в «принципи­альном» контексте в силу элементарной необходимости. Похо­жим образом обстоит дело с установлением истинности-высказываний,-высказывание признается истинным, если его можно представить в виде операции некоторой машины Тью­ринга, незавершаемой принципиально, вне зависимости от того, что мы могли бы получить на практике путем непосредствен­ных вычислений. (Об этом мы говорили в комментарии к воз­ражению) Аналогично, утверждение, что какое-то конкрет­ное предположение выводимо (либо невыводимо) в рамках неко­ей формальной системы, следует понимать в «принципиальном» смысле, поскольку такое утверждение, в сущности, представ­ляет собой вид утверждения об истинном (или, соответственно, ложном) характере какого-то конкретного-высказывания (см. окончание обсуждения возражения). Соответственно, когда нас интересует выводимость предположения в рамках некоторого неизменного набора правил, «познаваемость» всегда будет пони­маться именно в таком «принципиальном» смысле.


Если же нам предстоит решить вопрос о «познаваемости» самих правил, то здесь необходимо прибегнуть к «практическо­му» подходу. Принципиально возможно описать любую фор­мальную систему, машину Тьюринга, либо-высказывание, а следовательно, если мы хотим, чтобы вопрос об их «непознава­емости» имел хоть какой-нибудь смысл, нам следует рассматри­вать его именно в плоскости возможности их практической ре­ализации. В принципе, познаваемым является абсолютно любой алгоритм, каким бы он ни был, — в том смысле, что осуществля­ющая этот алгоритм операция машины Тьюринга становится «из­вестной», как только становится известным натуральное число, являющееся кодовым обозначением данной операции (например, согласно правилам нумерации машин Тьюринга, приведенным в НРК). Нет решительно никаких оснований предполагать, что принципиально непознаваемым может оказаться такой объект, как натуральное число. Все натуральные числа (а значит, и ал­горитмические операции) можно представить в виде последова­тельностидвигаясь вдоль которой, мы — в принципе — можем со временем достичь любого натураль­ного числа, каким бы большим это число ни было! Практически же, число может оказаться настолько огромным, что добраться до него таким способом в обозримом будущем не представляет­ся возможным. Например, номер машины Тьюринга, описанной в НРК, на с. 56, явно слишком велик, чтобы его можно бы­ло получить на практике посредством подобного перечисления.

Даже если мы были бы способны выдавать каждую последую­щую цифру за наименьший теоретически определимый временной промежуток (в масштабе времени Планка равный приблизитель­носм.), то и в этом случае за все время существования Вселенной, начиная от «большого взрыва» и до настоящего момента, нам не удалось бы добраться ни до какого числа, двоичное представление которого содержит более 203 зна­ков. В числе, о котором только что упоминалось, знаков более чем в 20 раз больше — однако это ничуть не мешает ему быть «познаваемым» в принципе, причем в НРК это число определено в явном гиде.

Практически «непознаваемыми» следует считать такое на­туральное число (или операцию машины Тьюринга), сложность одного только описания которого оказывается недоступной че­ловеческим возможностям. Сказано, на первый взгляд, довольно громко, однако, зная о конечной природе человека, можно смело утверждать, что какой-то предел так или иначе существовать должен, а следовательно, должны существовать и числа, нахо­дящиеся за этим пределом, описать которые человек не в со­стоянии. (См. также комментарий к возражению) В соответ­ствии с возможностьюнам следует полагать, что за преде­лами познаваемости алгоритм(предположительно лежащий в основе математического понимания) оказывается именно вслед­ствие неимоверной сложности и чрезвычайной детализирован-ности своего описания — причем речь идет исключительно об «описуемости» алгоритма, а не о познаваемости его в качестве алгоритма, которым, как предполагается, мы пользуемся-таки в нашей интеллектуальной деятельности. Требование «неописуе-мости», собственно, и отделяет случайот случаяИными словами, рассматривая случаймы должны учитывать воз­можность того, что наших человеческих способностей может оказаться недостаточно даже для того, чтобы описать это самое число, не говоря уже о том, чтобы установить, обладает ли оно свойствами, какими должно обладать число, определяющее алго­ритмическую операцию, в соответствии с которой работает наше же математическое понимание.