Файл: Лекция общая характеристика нефтяной залежи. Понятие о нефтяной залежи. Механизм использования пластовой энергии при добыче нефти.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 466

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1.1. Понятие о нефтяной залежи

1.2. Механизм использования пластовой энергии при добыче нефти

2.1. Пластовые давления

2.2. Приток жидкости к скважине

ЛЕКЦИЯ 3. РЕЖИМЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ

Водонапорный режим

2.5. Упругий режим

2.6. Режим газовой шапки

2.7. Режим растворенного газа

2.8. Гравитационный режим

4.1. Конструкция оборудования забоев скважин

4.2. Приток жидкости к перфорированной скважине

ЛЕКЦИЯ 5. ТЕХНИКА ПЕРФОРАЦИИ СКВАЖИН. ПЕСКОСТРУЙНАЯ ПЕРФОРАЦИЯ.

4.4. Пескоструйная перфорация

ЛЕКЦИЯ 6. МЕТОДЫ ОСВОЕНИЯ НЕФТЯНЫХ СКВАЖИН. ПЕРЕДВИЖНЫЕ КОМПРЕССОРНЫЕ УСТАНОВКИ. ОСВОЕНИЕ НАГНЕТАТЕЛЬНЫХ СКВАЖИН.

4.6. Передвижные компрессорные установки

4.7. Освоение нагнетательных скважин

Лекция 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.1. Назначение методов и их общая характеристика

5.2. Обработка скважин соляной кислотой

ЛЕКЦИЯ 8. ВОЗДЕЙСТВИЕ МЕТОДОМ ТЕРМОКИСЛОТНОЙ ОБРАБОТКИ.

5.4. Поинтервальная или ступенчатая СКО

5.5. Кислотные обработки терригенных коллекторов

5.6. Техника и технология кислотных обработок скважин

ЛЕКЦИЯ 9. ГИДРАВЛИЧЕСКИЙ РАЗРЫВ ПЛАСТА

5.8. Осуществление гидравлического разрыва

ЛЕКЦИЯ 10. ТЕХНИКА ИСПОЛЬЗУЕМАЯ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА

5.10. Тепловая обработка призабойной зоны скважины

ЛЕКЦИЯ 11. ТЕРМОГАЗОХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.12. Другие методы воздействия на призабойную зону скважин

Лекция 12. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН

8.1. Артезианское фонтанирование

8. 2. Фонтанирование за счет энергии газа

8. 3. Условие фонтанирования

ЛЕКЦИЯ 13. РАСЧЕТ ФОНТАННОГО ПОДЪЕМНИКА

8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления

Лекция 14. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН

9.1. Общие принципы газлифтной эксплуатации

9.2. Конструкции газлифтных подъемников

9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)

ЛЕКЦИЯ 15. МЕТОДЫ СНИЖЕНИЯ ПУСКОВЫХ ДАВЛЕНИЙ

9.5. Газлифтные клапаны Современная технология зксплуатации газлифтных скважин неразрывно связана с широким использованием глубинных клапанов специальной конструкции, с помощью которых устанавливается или прекращается связь между трубами и межтрубным пространством и регулируется поступление газа в НКТ. В настоящее время существует большое число глубинных клапанов разнообразных конструкций.Все клапаны по своему назначению можно разделить на три группы.1. Пусковые клапаны для пуска газлифтных скважин и их освоения.2. Рабочие клапаны для непрерывной или периодической работы газлифтных скважин, оптимизации режима их работы при изменяющихся условиях в скважине путем ступенчатого изменения места ввода газа в НКТ. При периодической эксплуатации через эти клапаны происходит переток газа в НКТ в те моменты, когда над клапаном накопится столб жидкости определенной высоты и эти клапаны перекрывают подачу газа после выброса из НКТ жидкости на поверхность.3. Концевые клапаны для поддержания уровня жидкости в межтрубном пространстве ниже клапана на некоторой глубине, что обеспечивает более равномерное поступление через клапан газа в НКТ и предотвращает пульсацию. Они устанавливаются вблизи башмака колонны труб.По конструктивному исполнению газлифтные клапаны очень разнообразны. В качестве упругого элемента в них используется либо пружина (пружинные клапаны), либо сильфонная камера, в которую заблаговременно закачан азот до определенного давления (сильфонные клапаны). В этих клапанах упругим элементом является сжатый азот. Существуют комбинированные клапаны, в которых используются и пружина, и сильфон. По принципу действия большинство клапанов являются дифференциальными, т. е. открываются или закрываются в зависимости от перепада давлений в межтрубном пространстве и в НКТ на уровне клапана. Они используются как в качестве пусковых, так и в качестве рабочих. В отечественной практике нефтедобычи пружинные клапаны были разработаны (А. П. Крылов и Г. В. Исаков) и испытаны на нефтяных промыслах Баку. Рис. 9.8. Принципиальная схема пружинного клапанаПружинный дифференциальный клапан (рис. 9.8) укрепляется на внешней стороне НКТ. Он имеет основной 1 и вспомогательный 2 штуцера. Газ поступает через отверстия 3, число которых можно изменять. На обоих концах штока 4 имеются две клапанные головки, причем пружины, натяжение которых регулируется гайкой 6, держат шток прижатым к нижнему штуцеру 2. Таким образом, нормально клапан открыт. При его обнажении газ через отверстие 3 и штуцер 1 проникает в НКТ и газирует в них жидкость. В результате давление в НКТ Рт падает, а Рк остается постоянным. Возникает сила, стремящаяся преодолеть натяжение пружины Рп и закрыть клапан. Если f2 - площадь сечения нижнего штуцера, Рт - давление внутри клапана (потерями на трение пренебрегаем), а Рк - давление, действующее на нижний клапан, то условие закрытия клапана запишется как или где Рзак = Рк - Рт - такая разность давлений, при которой преодолевается сила пружины Fп и клапан закрывается (закрывающий перепад). После закрытия верхняя головка прижмется к штуцеру 1, площадь которого f1 намного больше f2. При закрытии давление на клапане ниже штуцера 1 станет равным Рк. Оно будет действовать на большую площадь верхнего штуцера f1, и клапан будет надежно удерживаться в закрытом состоянии при условии Поскольку f1>> f2, то согласно (9.36) клапан будет оставаться закрытым даже при малом перепаде давлений Рк - Рт. При уменьшении разницы Рк - Рт до определенного минимума пружина преодолеет силу f1(Рк - Рт) и клапан откроется. Эта разница давлений называется открывающим перепадом. Таким образом, открытие клапана произойдет при условии Сопоставляя (9.35) и (9.37) и учитывая, что f1>> f2, можно видеть, что Рзак >> Рот. Величины Рзак и Рот можно регулировать, изменяя натяжение пружины регулировочной гайкой 6, а также изменением сечения f2 штуцера 2. Пропускная способность клапана по газу регулируется числом или размером отверстий 3. Важной характеристикой для клапана является зависимость его пропускной способности от перепада давлений на клапане (рис. 9.9). К моменту закрытия клапана и отсечки газа уровень жидкости в межтрубном пространстве обнажает следующий клапан, который вступает в действие вместо закрытого предыдущего. Рис. 9.9. Зависимость расхода газа через клапан от перепада давленийСильфонные клапаны бывают двух типов: работающие от давления в межтрубном пространстве Рк; работающие от давления в НКТ Рт. Сильфонный клапан, управляемый давлением Рк, (рис. 9.10), состоит из сильфонной камеры 1, заряженной азотом до давления. Эффективная площадь сечения сильфона fс. На штоке 2 имеется клапан 3, сечение седла которого fк. Через штуцерное отверстие 4 газ поступает из межтрубного пространства через клапан в НКТ. Рис. 9.10. Принципиальная схема клапана, управляемого давлением в межтрубном пространствеПри закрытом клапане давление Рк в нем будет действовать на площадь сильфона fс за вычетом площади клапана fк. Со стороны НКТ на площадь fк будет действовать давление Рт. Обе эти силы будут стремиться открыть клапан. Препятствовать открытию будет давление газа в сильфоне Рс, действующее на площадь fc. Открытие клапана произойдет, если Давление, при котором откроется клапан, будет равно или Деля числитель и знаменатель справа на fс и обозначая fк / fс =R, получим Это будет давление в межтрубном пространстве, при котором клапан откроется. Решая (9.38) относительно Рс - давления зарядки сильфона, найдем Это будет давление, которое необходимо создать в сильфонной камере при ее зарядке на поверхности при заданном давлении в межтрубном пространстве для открытия клапана (Рк)от.После открытия клапана давление внутри клапана будет действовать на всю площадь сильфона, поэтому будет справедливо равенство сил Непосредственно перед закрытием клапана в нем под сильфоном должно быть давление закрытия (Ра)зак Откуда видно, что (Рк)зак = Рс.Тогда разница открывающего и закрывающего перепадов будет равна После подстановки в (9.40) значения Рс согласно (9.39) найдем или Из (9.41) видно, что R = fк / fс является важной величиной, определяющей характеристику клапана.Обычно диаметр седла клапана колеблется в пределах от 3 до 12 мм, а R от 0,08 до 0,5. Однако действительная величина R из-за неучета сил трения газа в клапане меньше расчетной, определяемой формулой (9.41). Это означает, что эффективное значение R меньше действительного. Уменьшение составляет


ЭКСПЛУАТАЦИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН

ЛЕКЦИЯ 1. ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ. ПОНЯТИЕ О НЕФТЯНОЙ ЗАЛЕЖИ. МЕХАНИЗМ ИСПОЛЬЗОВАНИЯ ПЛАСТОВОЙ ЭНЕРГИИ ПРИ ДОБЫЧЕ НЕФТИ.

1.1. Понятие о нефтяной залежи


Нефтяная залежь представляет собой скопление жидких углеводородов в некоторой области земной коры, обусловленное причинами геологического характера. Часто нефтяная залежь имеет контакт с водяным пластом. При этом возможны два основных типа взаимного расположения. Если вода располагается ниже нефтяной залежи на всем ее протяжении, такую воду называют подошвенной. Если контакт с водой происходит в пониженных частях залежи, на ее крыльях в этом случае используется термин - контурная вода. Уровень, на котором расположена граница между нефтью и .водой, определяет положение водо-нефтяного контакта.

В ряде случаев на эксплуатацию залежи влияние может оказывать и вода, находящаяся выше или ниже нефтяной залежи, а также вода, находящаяся в пропластах самого нефтяного пласта (промежуточная вода).

При формировании нефтяной залежи может образоваться область, занятая свободным газом, так называемая газовая шапка. Размеры этой области могут быть незначительными, а могут иметь промышленное значение. В этом случае залежь называется нефтегазовой.

В процессе эксплуатации залежи на показатели разработки оказывает существенное влияние наличие контакта с водяной и газовой областями. Поэтому уже на стадии разведки месторождения важно правильно определить тип залежи и оценить соотношение размеров областей, занятых нефтью и газом.

Статистические исследования данных о составных пластовых нефтей и газов большого числа месторождений показали, что состав и другие термодинамические и физико-химические характеристики добываемой продукции являются информативными в отношении оценки типа залежи, соотношения нефти и газа в пласте, наличия аномально высоких пластовых давлений и других важных для разработки факторов. Использование этих данных позволяет на ранней стадии разведки и разработки получить дополнительную важную информацию о состоянии объекта к обычно используемой при геологических и промысловых исследованиях.


Так как состав нефти и газа относится к числу параметров, которые могут варьироваться в пределах одной и той же залежи, то при их использовании следует применять методы классификации, нс чувствительные к изменению этих параметров в пределах чтон залежи. В качестве такого метода можно рекомендовать метод ранговой классификации. Суть его заключается в следующем.

Предварительно определяют информативность каждого признака. Она может быть оценена по коэффициенту корреляции между рассматриваемым признаком, например, составом нефти и газа и изучаемым показателем, в данном случае - отношением объема нефтяной части к газовой Vн/Vг. Чем выше коэффициент корреляции, тем больше информативность признака. Для определения степени связи наиболее удобен с практической точки зрения метод ранговой корреляции. Рассмотрим его. Выявим наличие связи между Vн/Vг и содержанием C4H10 в газе по данным N месторождений. Каждому значению Vн/Vг и содержанию C4H10 присваиваем определенный ранг: наибольшему значению Vн/Vг - ранг 1, второму по величине - ранг 2 и т.д. Аналогично присваиваем ранги значениям пропана. Обозначим ранг i-го по порядку значения Vн/Vг через Xi, а соответствующего значения C4H10 - через Yi. Таким образом, имеем ряд пар (Xi, Yi). Вычисляем коэффициент Спирмена R ранговой корреляции

.

Далее подсчитываем значимость коэффициента R, для чего вычисляем

.

По соответствующим вероятностным таблицам находим критическое значение tтабл для t - распределения при N - 2 степенях свободы и уровне значимости α (обычно α принимается равным 0,05 или 0,1). Если вычисленное значение t > tтабл, то полученное t значимо и по R судят о степени связи между Vн/Vг и C4H10. Аналогично проверяем и другие факторы. Выбираем те из них, которым соответствуют наибольшие коэффициенты ранговой корреляции R.

Результаты анализа данных по ряду месторождений страны показали, что наиболее информативными признаками являются: содержание C4H10 в газе; отношение содержаний (С2

Нб)/(С3Н8); коэффициент φ = (С2Нб)·Pпл·Ф200·10-3, где (С2Н6) - содержание этана в газе, %; Pпл - пластовое давление, МПа; Ф200 - объемный выход фракций при нагреве до 200° С.

Анализ данных по месторождениям страны позволил выделить три основных типа залежи (М - сумма рангов всех трех признаков для данного месторождения),

0 < М < 5 Vн/Vг > 5 - нефтяная залежь;

6 < М < 12 0,5 < Vн/Vг < 5 - нефтегазовая залежь;

13 < М < 21 0 < Vн/Vг < 0,5 - газоконденсатная залежь.

Таким образом, по составу газа уже на стадии разведки месторождения можно диагностировать тип залежи.

Отметим, что любой метод распознавания образов, в какой бы задаче он не применялся, дает ответ с определенной вероятностью ошибки - неправильного распознавания. Несмотря на малую величину этой ошибки, т. е. высокий процент успешного распознавания образов, цена этой ошибки в отдельных случаях может быть высокой. Например, если из 100 залежей их тип будет правильно определен в 99 случаях, то ошибка составит всего 1%. В то же время, если единственная залежь, тип которой определен неверно, обладает большими запасами, то неправильная ее разработка, основанная на предполагаемом типе, может дать огромные экономические потери. Поэтому этот подход необходимо увязать и дополнить результатами геофизических исследований, анализом геологических особенностей и т. п., т. е. использовать комплекс определений, что повышает надежность диагностирования.

1.2. Механизм использования пластовой энергии при добыче нефти


Жидкость из пласта в скважину поступает под действием перепада давления между пластом и забоем скважины. Поэтому пластовое давление - основной фактор, определяющий текущее энергетическое состояние залежи. Точнее, следует говорить не об абсолютной величине этого параметра, а об его соотношении с нормальным пластовым давлением на глубине залегания данной залежи, которое равно давлению столба воды равной высоты. Различают залежи, у которых начальное пластовое давление превышает эту величину (аномально-высокое пластовое давление - АВПД) и залежи с более низким начальным давлением (аномально низкое пластовое давление - АНПД).

Аномалии начального пластового давления определяются различными причинами, в основном геологического характера. Анализ данных по большому числу нефтяных месторождений тяжелых нефтей показал, что существует корреляционная зависимость между удельным весом (содержанием тяжелых компонентов в нефти) и коэффициентом аномально высокого пластового давления, который равен отношению АВПД в залежи к нормальному пластовому давлению на соответствующей глубине. Именно, с ростом удельного веса нефти наблюдается тенденция к увеличению коэффициента аномальности. Таким образом, по составу нефти, определяемому по устьевым замерам, можно оценивать АВПД в залежи.

Другая причина проявления аномального пластового давления может быть обусловлена особенностями гидростатики разноплотных жидкостей. Пусть, например, кровля нефтяного пласта находится на глубине 1000 м, водонефтяной контакт - на глубине 2000 м, а нижняя граница водной области - на глубине 3000 м. Так как давление в пластах распределяется по гидростатическому закону в соответствии с удельным весом воды, то на глубине 3000 м пластовое давление равно примерно 30 МПа, на отметке водонефтяного контакта - 20 МПа. Если принять удельный вес нефти 800 кг/м3, то на кровле нефтяного пласта давление будет равно 20 - 8 = 12 МПа, в то время как нормальное пластовое давление на этой глубине равно 10 МПа, т. е. коэффициент аномальности равен 1,2. При наличии газовой шапки этот эффект будет существенный. Можно решать и обратную задачу - по определенному распределению давления по глубине оценивать положение водонефтяного контакта.

Различают два типа источников пластовой энергии -
естественные и искусственные. К естественным источникам относятся упругость пластовой системы, напор пластовых вод, наличие свободного газа (в виде газовой шапки), энергия растворенного газа, напор обусловленный силой тяжести. Пластовую энергию можно поддерживать искусственным способом - закачкой в пласт воды, пара или газа. В зависимости от того, какой источник пластовой энергии преобладает, формируется определенный режим разработки. Рассмотрим последовательно каждый из этих режимов.

В начальном состоянии пластовая система, под которой понимается вмещающий коллектор, нефтяная часть и контактирующий с ней водоносный бассейн, находится в сжатом состоянии, определяемом начальным пластовым давлением. Отбор нефти из залежи приводит к снижению там давления, в результате чего происходит расширение частиц породы, нефти и воды. А это, в свою очередь, уменьшает падение пластового давления. Таким образом, в процессе разработки начальная упругая энергия сжатия пластовой системы уменьшается. Метод разработки нефтяного месторождения, основанный на использовании запаса упругой энергии пластовой системы, называется разработкой на естественном режиме.

Горные породы, нефть и вода имеют сравнительно небольшие коэффициенты сжимаемости. Так, для воды β = 0,5-10-3 Мпа-1, для нефтей β = 10-3 Мпа-1, для горных пород - на порядок ниже. Поэтому даже при полном снижении давления от начального пластового до атмосферного за счет упругой энергии можно извлечь всего несколько процентов от начальных запасов месторождения (не более 3 - 5%). Однако если объем водоносного бассейна значительно превышает объем нефтяной залежи, то ситуация меняется. В этом случае при снижении давления прирост объема воды за счет расширения может стать соизмеримым с объемом нефтяной части, что приведет к увеличению вытесненной из пласта нефти.

Реализация такого режима в сильной степени зависит от темпов отбора нефти из залежи. При высоких темпах водоносный бассейн не успевает реагировать на изменение давления в нефтяной части, вследствие чего пластовое давление не будет поддерживаться за счет вторжения воды в нефтяную зону. Существенным недостатком водонапорного режима является неконтролируемое вторжение воды в нефтяную залежь. Это приводит к преждевременному обводнению добывающих скважин, неравномерному