Файл: Лекция общая характеристика нефтяной залежи. Понятие о нефтяной залежи. Механизм использования пластовой энергии при добыче нефти.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 561

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1.1. Понятие о нефтяной залежи

1.2. Механизм использования пластовой энергии при добыче нефти

2.1. Пластовые давления

2.2. Приток жидкости к скважине

ЛЕКЦИЯ 3. РЕЖИМЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ

Водонапорный режим

2.5. Упругий режим

2.6. Режим газовой шапки

2.7. Режим растворенного газа

2.8. Гравитационный режим

4.1. Конструкция оборудования забоев скважин

4.2. Приток жидкости к перфорированной скважине

ЛЕКЦИЯ 5. ТЕХНИКА ПЕРФОРАЦИИ СКВАЖИН. ПЕСКОСТРУЙНАЯ ПЕРФОРАЦИЯ.

4.4. Пескоструйная перфорация

ЛЕКЦИЯ 6. МЕТОДЫ ОСВОЕНИЯ НЕФТЯНЫХ СКВАЖИН. ПЕРЕДВИЖНЫЕ КОМПРЕССОРНЫЕ УСТАНОВКИ. ОСВОЕНИЕ НАГНЕТАТЕЛЬНЫХ СКВАЖИН.

4.6. Передвижные компрессорные установки

4.7. Освоение нагнетательных скважин

Лекция 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.1. Назначение методов и их общая характеристика

5.2. Обработка скважин соляной кислотой

ЛЕКЦИЯ 8. ВОЗДЕЙСТВИЕ МЕТОДОМ ТЕРМОКИСЛОТНОЙ ОБРАБОТКИ.

5.4. Поинтервальная или ступенчатая СКО

5.5. Кислотные обработки терригенных коллекторов

5.6. Техника и технология кислотных обработок скважин

ЛЕКЦИЯ 9. ГИДРАВЛИЧЕСКИЙ РАЗРЫВ ПЛАСТА

5.8. Осуществление гидравлического разрыва

ЛЕКЦИЯ 10. ТЕХНИКА ИСПОЛЬЗУЕМАЯ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА

5.10. Тепловая обработка призабойной зоны скважины

ЛЕКЦИЯ 11. ТЕРМОГАЗОХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.12. Другие методы воздействия на призабойную зону скважин

Лекция 12. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН

8.1. Артезианское фонтанирование

8. 2. Фонтанирование за счет энергии газа

8. 3. Условие фонтанирования

ЛЕКЦИЯ 13. РАСЧЕТ ФОНТАННОГО ПОДЪЕМНИКА

8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления

Лекция 14. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН

9.1. Общие принципы газлифтной эксплуатации

9.2. Конструкции газлифтных подъемников

9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)

ЛЕКЦИЯ 15. МЕТОДЫ СНИЖЕНИЯ ПУСКОВЫХ ДАВЛЕНИЙ

9.5. Газлифтные клапаны Современная технология зксплуатации газлифтных скважин неразрывно связана с широким использованием глубинных клапанов специальной конструкции, с помощью которых устанавливается или прекращается связь между трубами и межтрубным пространством и регулируется поступление газа в НКТ. В настоящее время существует большое число глубинных клапанов разнообразных конструкций.Все клапаны по своему назначению можно разделить на три группы.1. Пусковые клапаны для пуска газлифтных скважин и их освоения.2. Рабочие клапаны для непрерывной или периодической работы газлифтных скважин, оптимизации режима их работы при изменяющихся условиях в скважине путем ступенчатого изменения места ввода газа в НКТ. При периодической эксплуатации через эти клапаны происходит переток газа в НКТ в те моменты, когда над клапаном накопится столб жидкости определенной высоты и эти клапаны перекрывают подачу газа после выброса из НКТ жидкости на поверхность.3. Концевые клапаны для поддержания уровня жидкости в межтрубном пространстве ниже клапана на некоторой глубине, что обеспечивает более равномерное поступление через клапан газа в НКТ и предотвращает пульсацию. Они устанавливаются вблизи башмака колонны труб.По конструктивному исполнению газлифтные клапаны очень разнообразны. В качестве упругого элемента в них используется либо пружина (пружинные клапаны), либо сильфонная камера, в которую заблаговременно закачан азот до определенного давления (сильфонные клапаны). В этих клапанах упругим элементом является сжатый азот. Существуют комбинированные клапаны, в которых используются и пружина, и сильфон. По принципу действия большинство клапанов являются дифференциальными, т. е. открываются или закрываются в зависимости от перепада давлений в межтрубном пространстве и в НКТ на уровне клапана. Они используются как в качестве пусковых, так и в качестве рабочих. В отечественной практике нефтедобычи пружинные клапаны были разработаны (А. П. Крылов и Г. В. Исаков) и испытаны на нефтяных промыслах Баку. Рис. 9.8. Принципиальная схема пружинного клапанаПружинный дифференциальный клапан (рис. 9.8) укрепляется на внешней стороне НКТ. Он имеет основной 1 и вспомогательный 2 штуцера. Газ поступает через отверстия 3, число которых можно изменять. На обоих концах штока 4 имеются две клапанные головки, причем пружины, натяжение которых регулируется гайкой 6, держат шток прижатым к нижнему штуцеру 2. Таким образом, нормально клапан открыт. При его обнажении газ через отверстие 3 и штуцер 1 проникает в НКТ и газирует в них жидкость. В результате давление в НКТ Рт падает, а Рк остается постоянным. Возникает сила, стремящаяся преодолеть натяжение пружины Рп и закрыть клапан. Если f2 - площадь сечения нижнего штуцера, Рт - давление внутри клапана (потерями на трение пренебрегаем), а Рк - давление, действующее на нижний клапан, то условие закрытия клапана запишется как или где Рзак = Рк - Рт - такая разность давлений, при которой преодолевается сила пружины Fп и клапан закрывается (закрывающий перепад). После закрытия верхняя головка прижмется к штуцеру 1, площадь которого f1 намного больше f2. При закрытии давление на клапане ниже штуцера 1 станет равным Рк. Оно будет действовать на большую площадь верхнего штуцера f1, и клапан будет надежно удерживаться в закрытом состоянии при условии Поскольку f1>> f2, то согласно (9.36) клапан будет оставаться закрытым даже при малом перепаде давлений Рк - Рт. При уменьшении разницы Рк - Рт до определенного минимума пружина преодолеет силу f1(Рк - Рт) и клапан откроется. Эта разница давлений называется открывающим перепадом. Таким образом, открытие клапана произойдет при условии Сопоставляя (9.35) и (9.37) и учитывая, что f1>> f2, можно видеть, что Рзак >> Рот. Величины Рзак и Рот можно регулировать, изменяя натяжение пружины регулировочной гайкой 6, а также изменением сечения f2 штуцера 2. Пропускная способность клапана по газу регулируется числом или размером отверстий 3. Важной характеристикой для клапана является зависимость его пропускной способности от перепада давлений на клапане (рис. 9.9). К моменту закрытия клапана и отсечки газа уровень жидкости в межтрубном пространстве обнажает следующий клапан, который вступает в действие вместо закрытого предыдущего. Рис. 9.9. Зависимость расхода газа через клапан от перепада давленийСильфонные клапаны бывают двух типов: работающие от давления в межтрубном пространстве Рк; работающие от давления в НКТ Рт. Сильфонный клапан, управляемый давлением Рк, (рис. 9.10), состоит из сильфонной камеры 1, заряженной азотом до давления. Эффективная площадь сечения сильфона fс. На штоке 2 имеется клапан 3, сечение седла которого fк. Через штуцерное отверстие 4 газ поступает из межтрубного пространства через клапан в НКТ. Рис. 9.10. Принципиальная схема клапана, управляемого давлением в межтрубном пространствеПри закрытом клапане давление Рк в нем будет действовать на площадь сильфона fс за вычетом площади клапана fк. Со стороны НКТ на площадь fк будет действовать давление Рт. Обе эти силы будут стремиться открыть клапан. Препятствовать открытию будет давление газа в сильфоне Рс, действующее на площадь fc. Открытие клапана произойдет, если Давление, при котором откроется клапан, будет равно или Деля числитель и знаменатель справа на fс и обозначая fк / fс =R, получим Это будет давление в межтрубном пространстве, при котором клапан откроется. Решая (9.38) относительно Рс - давления зарядки сильфона, найдем Это будет давление, которое необходимо создать в сильфонной камере при ее зарядке на поверхности при заданном давлении в межтрубном пространстве для открытия клапана (Рк)от.После открытия клапана давление внутри клапана будет действовать на всю площадь сильфона, поэтому будет справедливо равенство сил Непосредственно перед закрытием клапана в нем под сильфоном должно быть давление закрытия (Ра)зак Откуда видно, что (Рк)зак = Рс.Тогда разница открывающего и закрывающего перепадов будет равна После подстановки в (9.40) значения Рс согласно (9.39) найдем или Из (9.41) видно, что R = fк / fс является важной величиной, определяющей характеристику клапана.Обычно диаметр седла клапана колеблется в пределах от 3 до 12 мм, а R от 0,08 до 0,5. Однако действительная величина R из-за неучета сил трения газа в клапане меньше расчетной, определяемой формулой (9.41). Это означает, что эффективное значение R меньше действительного. Уменьшение составляет



При этом условии свободного газа в пласте нет и фильтруется только нефть или нефть с водой. Проницаемый пласт 2 (рис. 2.3) обеспечивает гидродинамическую связь области отбора нефти 1 с областью питания 3, которой может служить естественный водоем - русло реки. В результате процессов складкообразования пористый и проницаемый пласты могут получить выход на дневную поверхность в районе, например, речного русла 3, из которого происходит непрерывная подпитка пласта водой при отборе нефти через скважины 4. Пласт-коллектор должен иметь достаточную проницаемость на всем протяжении от залежи до мест поглощения поверхностных вод. Это и обусловливает активность законтурной воды.

Как правило, пластовое давление в подобных залежах равно гидростатическому давлению столба воды высотой, равной глубине залегания пласта. Причем давление после некоторого снижения в начальной стадии разработки остается в дальнейшем практически постоянным при установленных темпах отбора жидкости (2 - 8 % от извлекаемых запасов в год).

При водонапорном режиме извлечение нефти сопровождаются ее замещением законтурной или нагнетаемой водой, что объясняет достаточно стабильные во времени дебиты скважин,



Рис. 2.3. Схема геологических условий существования

естественного водонапорного режима
пластовое давление и газовый фактор. Стабильность газового фактора обусловлено еще и тем, что при Pпл > Pнас выделения газа в пласте не происходит, поэтому с каждой тонной нефти добывают только то количество газа, которое было в ней растворено при пластовых условиях (рис. 2.4). Обводнение скважины происходит относительно быстро. Однако при сильной слоистой неоднородности пласта обводнение скважин может растягиваться во времени, так как по хорошо проницаемым прослоям пластовая вода быстро достигает забоев скважин, а по плохо проницаемым - медленно. При водонапорном режиме происходит достаточно эффективное вытеснение нефти и достигаются наиболее высокие коэффициенты нефтеотдачи.



Рис. 2.4. Изменение во времени основных

характеристик водонапорного режима
В отличие от естественного водонапорного режима при
искусственном непрерывный напор воды, вытесняющей нефть, создают ее нагнетанием с поверхности через систему нагнетательных скважин. В таком случае пласт-коллектор не обязательно должен иметь выход на дневную поверхность для получения непрерывного питания.

При водонапорном режиме количество отобранной жидкости из залежи (нефть, вода) всегда равно количеству вторгшейся в залежь законтурной воды в пластовых термодинамических условиях.

Перераспределение давления в пласте, которое происходит при изменении отборов жидкости из скважин, должно при этом режиме происходить быстро (теоретически мгновенно), поэтому этот режим еще называют жестким. Депрессионная воронка вокруг скважины устанавливается также мгновенно. Этот режим теоретически изучен наиболее полно. В настоящее время более 80 % всей добываемой нефти получается из месторождений, разрабатываемых в условиях водонапорного режима (главным образом искусственного).

2.5. Упругий режим


При этом режиме вытеснение нефти происходит под действием упругого расширения самой нефти, окружающей нефтяную залежь воды и скелета пласта. Обязательным условием существования этого режима (как и водонапорного) является превышение пластового давления над давлением насыщения (Pпл > Pнас). Пласт должен быть замкнутым, но достаточно большим, чтобы его упругой энергии хватило для извлечения основных запасов нефти.

Объемный коэффициент упругости среды определяется как доля первоначального объема этой среды, на которую изменяется этот объем при изменении давления на единицу, т. е.

, (2.43)

где ΔV - приращение объема (за счет упругого расширения);

ΔP - приращение давления (понижение давления); V - первоначальный объем среды.

Поскольку отрицательному приращению давления соответствует положительное приращение объема, то впереди ставится знак минус.

Твердый скелет пористого пласта при изменении внутреннего давления деформируется вследствие изменения объема самих частиц оседания кровли пласта при уменьшении внутрипорового давления, что приводит к уменьшению пористости и к дополнительному вытеснению жидкости. Из экспериментальных данных известно:

для воды ;

для нефти ;

для породы .

Обычно для оценки сжимаемости пласта пользуются приведенным коэффициентом сжимаемости, который называют коэффициентом упругости пласта. Это усредненный коэффициент объемной сжимаемости некоторой фиктивной среды, имеющей объем, равный объему реального пласта с насыщающими его жидкостями, совокупное упругое приращение которых равно упругому приращению объема фиктивной среды.

Согласно определению можно найти упругие приращения объемов воды, нефти и породы для единичного элемента объема пласта

. (2.44)

где V - объем фиктивной среды, равный сумме объемов воды
, нефти и твердого скелета пласта; Vп, Vв, Vн - общие объемы твердого скелета пласта и насыщающих его воды и нефти соответственно; β* - приведенный коэффициент упругости пласта.

Обозначая m, αв, αн соответственно пористость, водо- и нефтенасыщенность пласта, можем вместо (2.44) записать

, (2.45)

или

. (2.46)

Это и будет наиболее общее выражение для приведенного объемного коэффициента упругости пластовой системы.

Упругий режим, относящийся к режиму истощения, существенно неустановившийся. Давление в пласте по мере отбора жидкости падает. Для него характерны непрерывно разрастающаяся вокруг скважины воронка депрессии, систематическое падение дебита во времени при сохранении постоянства депрессии или систематическое увеличение депрессии во времени при сохранении дебита. Однако во всех случаях при упругом режиме газовый фактор должен оставаться постоянным по тем же причинам, что и при водонапорном режиме. Темп падения среднего пластового давления может быть различным в зависимости от общего запаса упругой энергии в пласте (от размеров окружающего залежь водного бассейна).



Рис. 2.5. Изменение во времени безразмерного средне-

интегрального пластового давления при упругом режиме
Несложно вывести приближенную формулу, описывающую падение безразмерного среднеинтегрального пластового давления Р при упругом режиме во времени t, при постоянном темпе отбора жидкости (q = const). Можно получить аналогичную формулу при переменном темпе отбора, когда функция изменения темпа отбора задана, например линейно возрастает или изменяется по любому другому закону. При q = const изменение давления Р(t) соответствует прямолинейному закону, т.е. прямой линии, но не проходящей через начало координат. При переменном темпе отбора закон изменения среднеинтегрального давления в пласте будет криволинейный.

Геологическими условиями, благоприятствующими существованию упругого режима, являются:

  • залежь закрытая, не имеющая регулярного питания;

  • обширная водонасыщенная зона, находящаяся за пределами контура нефтеносности; отсутствие газовой шапки;

  • наличие эффективной гидродинамической связи нефтенасыщенной части пласта с законтурной областью;

  • превышение пластового давления над давлением насыщения.


Чтобы при приемлемом темпе снижения среднего давления в пласте Рпл за разумные сроки отобрать запасы нефти, нужно иметь очень большое отношение объема упругой системы к геологическим запасам нефти.

При разработке залежи в условиях упругого режима быстрое понижение давления происходит в пределах самой залежи, а во всей системе, питающей залежь упругой энергией давления (в законтурной области), снижается медленно.

Из сказанного не следует, что упругий режим и связанные с ними процессы играют незначительную роль при добыче нефти. При определенных благоприятных условиях весь запас нефти может быть извлечен за счет упругого режима (при большой упруго-водонапорной системе). Последний играет существенную роль при переходных процессах, возникающих в результате изменения режимов работы скважин. При этом в пласте происходят затяжные процессы перераспределения давления, протекающие по законам упругого режима.