Файл: Лекция общая характеристика нефтяной залежи. Понятие о нефтяной залежи. Механизм использования пластовой энергии при добыче нефти.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 1062

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1.1. Понятие о нефтяной залежи

1.2. Механизм использования пластовой энергии при добыче нефти

2.1. Пластовые давления

2.2. Приток жидкости к скважине

ЛЕКЦИЯ 3. РЕЖИМЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ

Водонапорный режим

2.5. Упругий режим

2.6. Режим газовой шапки

2.7. Режим растворенного газа

2.8. Гравитационный режим

4.1. Конструкция оборудования забоев скважин

4.2. Приток жидкости к перфорированной скважине

ЛЕКЦИЯ 5. ТЕХНИКА ПЕРФОРАЦИИ СКВАЖИН. ПЕСКОСТРУЙНАЯ ПЕРФОРАЦИЯ.

4.4. Пескоструйная перфорация

ЛЕКЦИЯ 6. МЕТОДЫ ОСВОЕНИЯ НЕФТЯНЫХ СКВАЖИН. ПЕРЕДВИЖНЫЕ КОМПРЕССОРНЫЕ УСТАНОВКИ. ОСВОЕНИЕ НАГНЕТАТЕЛЬНЫХ СКВАЖИН.

4.6. Передвижные компрессорные установки

4.7. Освоение нагнетательных скважин

Лекция 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.1. Назначение методов и их общая характеристика

5.2. Обработка скважин соляной кислотой

ЛЕКЦИЯ 8. ВОЗДЕЙСТВИЕ МЕТОДОМ ТЕРМОКИСЛОТНОЙ ОБРАБОТКИ.

5.4. Поинтервальная или ступенчатая СКО

5.5. Кислотные обработки терригенных коллекторов

5.6. Техника и технология кислотных обработок скважин

ЛЕКЦИЯ 9. ГИДРАВЛИЧЕСКИЙ РАЗРЫВ ПЛАСТА

5.8. Осуществление гидравлического разрыва

ЛЕКЦИЯ 10. ТЕХНИКА ИСПОЛЬЗУЕМАЯ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА

5.10. Тепловая обработка призабойной зоны скважины

ЛЕКЦИЯ 11. ТЕРМОГАЗОХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.12. Другие методы воздействия на призабойную зону скважин

Лекция 12. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН

8.1. Артезианское фонтанирование

8. 2. Фонтанирование за счет энергии газа

8. 3. Условие фонтанирования

ЛЕКЦИЯ 13. РАСЧЕТ ФОНТАННОГО ПОДЪЕМНИКА

8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления

Лекция 14. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН

9.1. Общие принципы газлифтной эксплуатации

9.2. Конструкции газлифтных подъемников

9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)

ЛЕКЦИЯ 15. МЕТОДЫ СНИЖЕНИЯ ПУСКОВЫХ ДАВЛЕНИЙ

9.5. Газлифтные клапаны Современная технология зксплуатации газлифтных скважин неразрывно связана с широким использованием глубинных клапанов специальной конструкции, с помощью которых устанавливается или прекращается связь между трубами и межтрубным пространством и регулируется поступление газа в НКТ. В настоящее время существует большое число глубинных клапанов разнообразных конструкций.Все клапаны по своему назначению можно разделить на три группы.1. Пусковые клапаны для пуска газлифтных скважин и их освоения.2. Рабочие клапаны для непрерывной или периодической работы газлифтных скважин, оптимизации режима их работы при изменяющихся условиях в скважине путем ступенчатого изменения места ввода газа в НКТ. При периодической эксплуатации через эти клапаны происходит переток газа в НКТ в те моменты, когда над клапаном накопится столб жидкости определенной высоты и эти клапаны перекрывают подачу газа после выброса из НКТ жидкости на поверхность.3. Концевые клапаны для поддержания уровня жидкости в межтрубном пространстве ниже клапана на некоторой глубине, что обеспечивает более равномерное поступление через клапан газа в НКТ и предотвращает пульсацию. Они устанавливаются вблизи башмака колонны труб.По конструктивному исполнению газлифтные клапаны очень разнообразны. В качестве упругого элемента в них используется либо пружина (пружинные клапаны), либо сильфонная камера, в которую заблаговременно закачан азот до определенного давления (сильфонные клапаны). В этих клапанах упругим элементом является сжатый азот. Существуют комбинированные клапаны, в которых используются и пружина, и сильфон. По принципу действия большинство клапанов являются дифференциальными, т. е. открываются или закрываются в зависимости от перепада давлений в межтрубном пространстве и в НКТ на уровне клапана. Они используются как в качестве пусковых, так и в качестве рабочих. В отечественной практике нефтедобычи пружинные клапаны были разработаны (А. П. Крылов и Г. В. Исаков) и испытаны на нефтяных промыслах Баку. Рис. 9.8. Принципиальная схема пружинного клапанаПружинный дифференциальный клапан (рис. 9.8) укрепляется на внешней стороне НКТ. Он имеет основной 1 и вспомогательный 2 штуцера. Газ поступает через отверстия 3, число которых можно изменять. На обоих концах штока 4 имеются две клапанные головки, причем пружины, натяжение которых регулируется гайкой 6, держат шток прижатым к нижнему штуцеру 2. Таким образом, нормально клапан открыт. При его обнажении газ через отверстие 3 и штуцер 1 проникает в НКТ и газирует в них жидкость. В результате давление в НКТ Рт падает, а Рк остается постоянным. Возникает сила, стремящаяся преодолеть натяжение пружины Рп и закрыть клапан. Если f2 - площадь сечения нижнего штуцера, Рт - давление внутри клапана (потерями на трение пренебрегаем), а Рк - давление, действующее на нижний клапан, то условие закрытия клапана запишется как или где Рзак = Рк - Рт - такая разность давлений, при которой преодолевается сила пружины Fп и клапан закрывается (закрывающий перепад). После закрытия верхняя головка прижмется к штуцеру 1, площадь которого f1 намного больше f2. При закрытии давление на клапане ниже штуцера 1 станет равным Рк. Оно будет действовать на большую площадь верхнего штуцера f1, и клапан будет надежно удерживаться в закрытом состоянии при условии Поскольку f1>> f2, то согласно (9.36) клапан будет оставаться закрытым даже при малом перепаде давлений Рк - Рт. При уменьшении разницы Рк - Рт до определенного минимума пружина преодолеет силу f1(Рк - Рт) и клапан откроется. Эта разница давлений называется открывающим перепадом. Таким образом, открытие клапана произойдет при условии Сопоставляя (9.35) и (9.37) и учитывая, что f1>> f2, можно видеть, что Рзак >> Рот. Величины Рзак и Рот можно регулировать, изменяя натяжение пружины регулировочной гайкой 6, а также изменением сечения f2 штуцера 2. Пропускная способность клапана по газу регулируется числом или размером отверстий 3. Важной характеристикой для клапана является зависимость его пропускной способности от перепада давлений на клапане (рис. 9.9). К моменту закрытия клапана и отсечки газа уровень жидкости в межтрубном пространстве обнажает следующий клапан, который вступает в действие вместо закрытого предыдущего. Рис. 9.9. Зависимость расхода газа через клапан от перепада давленийСильфонные клапаны бывают двух типов: работающие от давления в межтрубном пространстве Рк; работающие от давления в НКТ Рт. Сильфонный клапан, управляемый давлением Рк, (рис. 9.10), состоит из сильфонной камеры 1, заряженной азотом до давления. Эффективная площадь сечения сильфона fс. На штоке 2 имеется клапан 3, сечение седла которого fк. Через штуцерное отверстие 4 газ поступает из межтрубного пространства через клапан в НКТ. Рис. 9.10. Принципиальная схема клапана, управляемого давлением в межтрубном пространствеПри закрытом клапане давление Рк в нем будет действовать на площадь сильфона fс за вычетом площади клапана fк. Со стороны НКТ на площадь fк будет действовать давление Рт. Обе эти силы будут стремиться открыть клапан. Препятствовать открытию будет давление газа в сильфоне Рс, действующее на площадь fc. Открытие клапана произойдет, если Давление, при котором откроется клапан, будет равно или Деля числитель и знаменатель справа на fс и обозначая fк / fс =R, получим Это будет давление в межтрубном пространстве, при котором клапан откроется. Решая (9.38) относительно Рс - давления зарядки сильфона, найдем Это будет давление, которое необходимо создать в сильфонной камере при ее зарядке на поверхности при заданном давлении в межтрубном пространстве для открытия клапана (Рк)от.После открытия клапана давление внутри клапана будет действовать на всю площадь сильфона, поэтому будет справедливо равенство сил Непосредственно перед закрытием клапана в нем под сильфоном должно быть давление закрытия (Ра)зак Откуда видно, что (Рк)зак = Рс.Тогда разница открывающего и закрывающего перепадов будет равна После подстановки в (9.40) значения Рс согласно (9.39) найдем или Из (9.41) видно, что R = fк / fс является важной величиной, определяющей характеристику клапана.Обычно диаметр седла клапана колеблется в пределах от 3 до 12 мм, а R от 0,08 до 0,5. Однако действительная величина R из-за неучета сил трения газа в клапане меньше расчетной, определяемой формулой (9.41). Это означает, что эффективное значение R меньше действительного. Уменьшение составляет



Кислотная обработка под давлением. При простых солянокислотных обработках (СКО) кислота проникает в хорошо проницаемые прослои, улучшая их и без того хорошую проницаемость. Плохо проницаемые прослои остаются неохваченными. Для устранения этого недостатка, связанного со слоистой неоднородностью пласта, применяют кислотные обработки под повышенным давлением. При этом четко выраженные высокопроницаемые прослои изолируются пакерами или предварительной закачкой в эти прослои буфера - высоковязкой эмульсии типа кислота в нефти. Таким способом при последующей закачке кислотного раствора можно значительно увеличить охват пласта по толщине воздействием кислоты.

СКО под давлением обычно является третьей операцией после ванн и простых СКО.

Сначала на скважине проводятся обычные подготовительные мероприятия: удаление забойных пробок, парафиновых отложений, изоляция обводнившихся прослоев или создание на забое столба тяжелой жидкости в пределах обводнившегося низа скважины. Обычно перед проведением СКО под давлением продуктивный пласт изучается для выявления местоположения поглощающих прослоев п их толщины. Для предохранения обсадной колонны от высокого давления у кровли пласта на НКТ устанавливают пакер с якорем. Для изоляции или для снижения поглотительной способности высокопроницаемых прослоев в пласт нагнетают эмульсию.

Эмульсию приготавливают прокачкой смеси 10 - 12%-ного раствора НСL и нефти центробежным насосом из одной емкости в другую. К легким нефтям добавляют присадки с эмульгирующими свойствами, например окисленный мазут, кислый газойль. ГрозНИИ рекомендует добавлять амины, диаминдиолеат и другие вещества.

Эмульсия обычно составляется из 70 % по объему раствора НСL и 30 % нефти. В зависимости от способа и времени перемешивания можно получить эмульсии различной вязкости, вплоть до 10 Па-с. При продолжительном перемешивании достигается большая дисперсность эмульсии и увеличение ее вязкости. Объемы нефтекислотной вязкой эмульсии для закачки в проницаемые прослои определяются объемом пор пласта в пределах предполагаемого радиуса закачки R, толщиной проницаемых прослоев h и их пористостью m по формуле



Обычно на 1 м толщины высокопроницаемого прослоя необходимо 1,5 - 2,5 м3 эмульсии. Рабочий раствор закачивается в тех же объемах, что и при простых СКО. Эмульсия в объеме НКТ и подпакерного пространства закачивается при открытом затрубном пространстве и негерметизированном пакере.


Затем спущенным на НКТ пакером герметизируют кольцевое пространство, и в пласт закачивается оставшийся объем эмульсии под меньшим давлением. После эмульсии закачивается рабочий раствор НСL объемом, равным внутреннему объему НКТ, также при умеренном давлении, а по достижении кислотой башмака НКТ закачка продолжается на максимальных скоростях для создания на забое необходимого давления. После рабочего раствора НСL без снижения скорости закачивается продавочная жидкость объемом равным объему НКТ и подпакерного пространства. Время выдержки раствора для полной нейтрализации такое же, как и при простых СКО. После выдержки пакер с якорем и НКТ извлекаются, и скважина пускается в эксплуатацию.


ЛЕКЦИЯ 8. ВОЗДЕЙСТВИЕ МЕТОДОМ ТЕРМОКИСЛОТНОЙ ОБРАБОТКИ.


Этот вид воздействия на ПЗС заключается в обработке забоя скважины горячей кислотой, нагрев которой происходит в результате экзотермической реакции соляной кислоты с магнием или некоторыми его сплавами (МЛ-1, МА-1 п др.) в специальном реакционном наконечнике, расположенном на конце НКТ, через который прокачивается рабочий раствор НСL. При этом происходит следующая реакция.



Хлористый магний (MgCL2) остается в растворе.

При взаимодействии 73 г чистой НСL с 24,3 г Mg происходит полная нейтрализация раствора, при которой выделяется 461,38 кДж тепловой энергии. Легко подсчитать, что при взаимодействии 1000 г магния выделится 18987 кДж теплоты.

Для растворения 1 кг Mg потребуется 18,61 л 15%-ного раствора НСL.

Необходимое количество 15%-ной соляной кислоты для получения различных температур раствора (на 1 кг Mg) приведено ниже.

Таблица 5.2

Количество НСL, л

50

60

70

80

100

Температура раствора, С

120

100

85

75

60

Остаточная концентрация НСL, %

9,6

10,5

11

11,4

12,2


Из уравнения баланса теплоты



следует что при реализации всей выделившейся теплоты Q кДж на нагрев V л раствора, имеющего теплоемкость Cv (кДж/лС), нагрев раствора произойдет на t °С или



Принимая приближенно теплоемкость раствора 15%-ной НСL, равной теплоемкости воды, т. е. Сv = 4,1868 кДж/лС , получим



На столько градусов увеличится температура раствора при полном использовании теплоты на нагрев только продуктов реакции. (По некоторым данным температура раствора может достигать 300 С).


При таком расчете получается только тепловой эффект и полностью нейтрализованная кислота. Чтобы сохранить активность раствора кислоты для взаимодействия с породой, его количество на 1 кг Mg надо брать не 18,61 л, а больше, однако при этом и температура раствора получится ниже, так как общий объем продуктов реакции увеличится.

В табл. 5.2 приведены количества 15 %-ной кислоты на 1 кг магния и получаемые при этом температура и остаточные концентрации НСL.

Обычно в наконечники загружают от 40 до 100 кг магния в зависимости от обрабатываемого интервала пласта и желаемой температуры. При этом прокачивается от 4 до 10 м3 15 %-ного раствора НСL.

Существуют два вида обработки.

Термохимическая обработка ПЗС - обработка горячей кислотой, при которой для растворения магния подается избыточное количество кислоты для растворения карбонатов породы пласта так, чтобы сохранялась концентрация НСL 10 - 12 %.

Термокислотная обработка ПЗС - сочетание термохимической и непрерывно следующей за ней кислотной обработки ПЗС. Причем кислотная обработка может быть как обычной, так и под давлением.

Скорость прокачки раствора НСL должна быть такой, чтобы в течение всего процесса на выходе наконечника была одинаковая запланированная температура и постоянная остаточная кислотность раствора. Это условие трудно выполнимо, так как при прокачке кислоты через магний непрерывно изменяются его масса, поверхность соприкосновения с кислотой, температура реакционной среды, концентрация кислоты и др. Это затрудняет расчет режима прокачки кислоты.

С помощью опытных прокачек в поверхностных условиях определили, что при давлениях на глубине установки реакционного наконечника, превышающих 3 МПа, рекомендуется применять магний в виде стружки, причем чем больше давление, тем магниевая стружка должна быть мельче и тоньше. При давлениях ниже 3 МПа - в виде брусков квадратного и круглого сечения. Причем чем ниже давление, тем площадь поперечного сечения этих брусков может быть больше. Так, при давлении до 1 МПа используются бруски с площадью 10 - 15 см2. При давлении от 1 до 3 МПа размеры брусков уменьшают так, чтобы площадь сечения каждого была 1 - 5 см
2 .

Термохимические солянокислотные обработки ПЗС эффективны в скважинах с низкими пластовыми температурами, в призабойной зоне которых наблюдается отложение твердых углеводородов (смолы, парафины, асфальты). Этот вид обработки может быть применен как для карбонатных коллекторов, так и для терригенных при достаточно высокой их карбонатности.