Файл: Лекция общая характеристика нефтяной залежи. Понятие о нефтяной залежи. Механизм использования пластовой энергии при добыче нефти.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 441

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1.1. Понятие о нефтяной залежи

1.2. Механизм использования пластовой энергии при добыче нефти

2.1. Пластовые давления

2.2. Приток жидкости к скважине

ЛЕКЦИЯ 3. РЕЖИМЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ

Водонапорный режим

2.5. Упругий режим

2.6. Режим газовой шапки

2.7. Режим растворенного газа

2.8. Гравитационный режим

4.1. Конструкция оборудования забоев скважин

4.2. Приток жидкости к перфорированной скважине

ЛЕКЦИЯ 5. ТЕХНИКА ПЕРФОРАЦИИ СКВАЖИН. ПЕСКОСТРУЙНАЯ ПЕРФОРАЦИЯ.

4.4. Пескоструйная перфорация

ЛЕКЦИЯ 6. МЕТОДЫ ОСВОЕНИЯ НЕФТЯНЫХ СКВАЖИН. ПЕРЕДВИЖНЫЕ КОМПРЕССОРНЫЕ УСТАНОВКИ. ОСВОЕНИЕ НАГНЕТАТЕЛЬНЫХ СКВАЖИН.

4.6. Передвижные компрессорные установки

4.7. Освоение нагнетательных скважин

Лекция 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.1. Назначение методов и их общая характеристика

5.2. Обработка скважин соляной кислотой

ЛЕКЦИЯ 8. ВОЗДЕЙСТВИЕ МЕТОДОМ ТЕРМОКИСЛОТНОЙ ОБРАБОТКИ.

5.4. Поинтервальная или ступенчатая СКО

5.5. Кислотные обработки терригенных коллекторов

5.6. Техника и технология кислотных обработок скважин

ЛЕКЦИЯ 9. ГИДРАВЛИЧЕСКИЙ РАЗРЫВ ПЛАСТА

5.8. Осуществление гидравлического разрыва

ЛЕКЦИЯ 10. ТЕХНИКА ИСПОЛЬЗУЕМАЯ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА

5.10. Тепловая обработка призабойной зоны скважины

ЛЕКЦИЯ 11. ТЕРМОГАЗОХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.12. Другие методы воздействия на призабойную зону скважин

Лекция 12. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН

8.1. Артезианское фонтанирование

8. 2. Фонтанирование за счет энергии газа

8. 3. Условие фонтанирования

ЛЕКЦИЯ 13. РАСЧЕТ ФОНТАННОГО ПОДЪЕМНИКА

8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления

Лекция 14. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН

9.1. Общие принципы газлифтной эксплуатации

9.2. Конструкции газлифтных подъемников

9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)

ЛЕКЦИЯ 15. МЕТОДЫ СНИЖЕНИЯ ПУСКОВЫХ ДАВЛЕНИЙ

9.5. Газлифтные клапаны Современная технология зксплуатации газлифтных скважин неразрывно связана с широким использованием глубинных клапанов специальной конструкции, с помощью которых устанавливается или прекращается связь между трубами и межтрубным пространством и регулируется поступление газа в НКТ. В настоящее время существует большое число глубинных клапанов разнообразных конструкций.Все клапаны по своему назначению можно разделить на три группы.1. Пусковые клапаны для пуска газлифтных скважин и их освоения.2. Рабочие клапаны для непрерывной или периодической работы газлифтных скважин, оптимизации режима их работы при изменяющихся условиях в скважине путем ступенчатого изменения места ввода газа в НКТ. При периодической эксплуатации через эти клапаны происходит переток газа в НКТ в те моменты, когда над клапаном накопится столб жидкости определенной высоты и эти клапаны перекрывают подачу газа после выброса из НКТ жидкости на поверхность.3. Концевые клапаны для поддержания уровня жидкости в межтрубном пространстве ниже клапана на некоторой глубине, что обеспечивает более равномерное поступление через клапан газа в НКТ и предотвращает пульсацию. Они устанавливаются вблизи башмака колонны труб.По конструктивному исполнению газлифтные клапаны очень разнообразны. В качестве упругого элемента в них используется либо пружина (пружинные клапаны), либо сильфонная камера, в которую заблаговременно закачан азот до определенного давления (сильфонные клапаны). В этих клапанах упругим элементом является сжатый азот. Существуют комбинированные клапаны, в которых используются и пружина, и сильфон. По принципу действия большинство клапанов являются дифференциальными, т. е. открываются или закрываются в зависимости от перепада давлений в межтрубном пространстве и в НКТ на уровне клапана. Они используются как в качестве пусковых, так и в качестве рабочих. В отечественной практике нефтедобычи пружинные клапаны были разработаны (А. П. Крылов и Г. В. Исаков) и испытаны на нефтяных промыслах Баку. Рис. 9.8. Принципиальная схема пружинного клапанаПружинный дифференциальный клапан (рис. 9.8) укрепляется на внешней стороне НКТ. Он имеет основной 1 и вспомогательный 2 штуцера. Газ поступает через отверстия 3, число которых можно изменять. На обоих концах штока 4 имеются две клапанные головки, причем пружины, натяжение которых регулируется гайкой 6, держат шток прижатым к нижнему штуцеру 2. Таким образом, нормально клапан открыт. При его обнажении газ через отверстие 3 и штуцер 1 проникает в НКТ и газирует в них жидкость. В результате давление в НКТ Рт падает, а Рк остается постоянным. Возникает сила, стремящаяся преодолеть натяжение пружины Рп и закрыть клапан. Если f2 - площадь сечения нижнего штуцера, Рт - давление внутри клапана (потерями на трение пренебрегаем), а Рк - давление, действующее на нижний клапан, то условие закрытия клапана запишется как или где Рзак = Рк - Рт - такая разность давлений, при которой преодолевается сила пружины Fп и клапан закрывается (закрывающий перепад). После закрытия верхняя головка прижмется к штуцеру 1, площадь которого f1 намного больше f2. При закрытии давление на клапане ниже штуцера 1 станет равным Рк. Оно будет действовать на большую площадь верхнего штуцера f1, и клапан будет надежно удерживаться в закрытом состоянии при условии Поскольку f1>> f2, то согласно (9.36) клапан будет оставаться закрытым даже при малом перепаде давлений Рк - Рт. При уменьшении разницы Рк - Рт до определенного минимума пружина преодолеет силу f1(Рк - Рт) и клапан откроется. Эта разница давлений называется открывающим перепадом. Таким образом, открытие клапана произойдет при условии Сопоставляя (9.35) и (9.37) и учитывая, что f1>> f2, можно видеть, что Рзак >> Рот. Величины Рзак и Рот можно регулировать, изменяя натяжение пружины регулировочной гайкой 6, а также изменением сечения f2 штуцера 2. Пропускная способность клапана по газу регулируется числом или размером отверстий 3. Важной характеристикой для клапана является зависимость его пропускной способности от перепада давлений на клапане (рис. 9.9). К моменту закрытия клапана и отсечки газа уровень жидкости в межтрубном пространстве обнажает следующий клапан, который вступает в действие вместо закрытого предыдущего. Рис. 9.9. Зависимость расхода газа через клапан от перепада давленийСильфонные клапаны бывают двух типов: работающие от давления в межтрубном пространстве Рк; работающие от давления в НКТ Рт. Сильфонный клапан, управляемый давлением Рк, (рис. 9.10), состоит из сильфонной камеры 1, заряженной азотом до давления. Эффективная площадь сечения сильфона fс. На штоке 2 имеется клапан 3, сечение седла которого fк. Через штуцерное отверстие 4 газ поступает из межтрубного пространства через клапан в НКТ. Рис. 9.10. Принципиальная схема клапана, управляемого давлением в межтрубном пространствеПри закрытом клапане давление Рк в нем будет действовать на площадь сильфона fс за вычетом площади клапана fк. Со стороны НКТ на площадь fк будет действовать давление Рт. Обе эти силы будут стремиться открыть клапан. Препятствовать открытию будет давление газа в сильфоне Рс, действующее на площадь fc. Открытие клапана произойдет, если Давление, при котором откроется клапан, будет равно или Деля числитель и знаменатель справа на fс и обозначая fк / fс =R, получим Это будет давление в межтрубном пространстве, при котором клапан откроется. Решая (9.38) относительно Рс - давления зарядки сильфона, найдем Это будет давление, которое необходимо создать в сильфонной камере при ее зарядке на поверхности при заданном давлении в межтрубном пространстве для открытия клапана (Рк)от.После открытия клапана давление внутри клапана будет действовать на всю площадь сильфона, поэтому будет справедливо равенство сил Непосредственно перед закрытием клапана в нем под сильфоном должно быть давление закрытия (Ра)зак Откуда видно, что (Рк)зак = Рс.Тогда разница открывающего и закрывающего перепадов будет равна После подстановки в (9.40) значения Рс согласно (9.39) найдем или Из (9.41) видно, что R = fк / fс является важной величиной, определяющей характеристику клапана.Обычно диаметр седла клапана колеблется в пределах от 3 до 12 мм, а R от 0,08 до 0,5. Однако действительная величина R из-за неучета сил трения газа в клапане меньше расчетной, определяемой формулой (9.41). Это означает, что эффективное значение R меньше действительного. Уменьшение составляет



При воздействии на известняк



При воздействии на доломит



Хлористый кальций (CaCL2) и хлористый магний (MgCL2) - это соли, хорошо растворимые в воде - носителе кислоты, образующейся в результате реакции. Углекислый газ (CO2) также легки удаляется из скважины, либо при соответствующем давлении (свыше 7,6 МПа) растворяется в той же воде.

В количественных соотношениях реакция соляной кислоты с известняком запишется следующим образом:





Таким образом, при взаимодействии с известняком 73 г чистой НСL при полной ее нейтрализации растворяется 100 г известняка. При этом получается 111 г растворимой соли хлористого кальция, 18 г воды и 44 г углекислого газа. Таким образом, на 1 кг известняка надо израсходовать следующее количество чистой НСL - 730 г.

Известно, что 1 л 15%-ного раствора кислоты содержит 161,2 г чистой НСL. Следовательно, для растворения 1 кг известняка потребуется 4,53 л раствора.

Аналогично для второй реакции воздействия НСL на доломит при взаимодействии 146 г чистой НСL с 184,3 г доломита [CaMg (CO3)2] при полной нейтрализации получается 111 г растворимой соли хлористого кальция; 95,3 г MgCL2; 36 г воды (Н2О) п 88 г углекислоты. Для растворения 1 кг доломита потребуется кислоты - 4,914 л 15%-ного раствора HCL.

Однако в кислоте всегда присутствуют примеси, которые при взаимодействии с ней могут образовать не растворимые в растворе нейтрализованой кислоты осадки. Выпадение этих осадков в порах пласта снижает проницаемость ПЗС. К числу таких примесей относятся следующие.

1. Хлорное железо (FeCL3), образующееся в результате гидролиза гидрата окиси железа [Fе(ОН)3], выпадающего в виде объемистого осадка.

2. Серная кислота H2SO4 в растворе при ее взаимодействии с хлористым кальцием СаСL2 образует гипс (CaS042H2O), который удерживается в растворе лишь в незначительпых количествах. Основная масса гипса выпадает в осадок в виде волокнистой массы игольчатых кристаллов.

3. Некоторые реагенты, вводимые в раствор кислоты в качестве антикоррозионных добавок (например, ингибитор ПБ-5).


4. Фтористый водород и фосфорная кислота, которые при некоторых технологических схемах производства соляной кислоты в ней присутствуют и при реагировании с карбонатами образуют в пласте нерастворимые осадки фтористого кальция (CaF2) и фосфорнокислого кальция [Сa3O4)2].

Для обработки скважин обычно готовится раствор соляной кислоты с содержанием чистой НСL в пределах 10 - 15%, так как при большом ее содержании нейтрализованный раствор получается очень вязким, что затрудняет его выход из пор пласта. Температура замерзания 15 %-ного раствора НСL равна минус 32,8 °С.

Рецептуру приготовления раствора отрабатывают либо в промысловых лабораториях, либо в исследовательских институтах. К раствору НСL добавляют следующие реагенты:

1. Ингибиторы - вещества, снижающие коррозионное воздействие кислоты на оборудование, с помощью которого раствор НСL транспортируют, перекачивают и хранят. Обычно ингибиторы добавляются в количестве до 1 % в зависимости от типа ингибитора и его исходной концентрации. В качестве ингибиторов используют:

формалин (0,6%), снижающий коррозионную активность в 7 - 8 раз;

уникол - липкую темно-коричневую жидкость (например, уникол ПБ-5) (0,25 - 0,5%), снижающую коррозионную активность в 30 - 42 раза. Однако поскольку уникод не растворяется в воде, то из нейтрализованной (отреагированной) кислоты он выпадает в осадок, поэтому его концентрацию уменьшают до 0,1 %, что снижает коррозионную активность только до 15 раз.

Для высоких температур и давлений разработан ингибитор - реагент И-1-А (0,4%) в смеси с уротропином (0,8%), снижающий коррозионную активность (при t = 87 °С и Р = 38 МПа) до 20 раз. Ингибитор катапин А считается одним из лучших. При дозировке 0,1 % от объема рабочего кислотного раствора он в 55 - 65 раз снижает коррозионную активность раствора, при 0,025% (0,25 кг на 1 м3 раствора) - в 45 раз. Однако его защитные свойства сильно ухудшаются при высоких температурах. Поэтому при t = 80 - 100 °С его дозировка увеличивается до 0,2 % с добавкой 0,2 % уротропина. Кроме того, катапин А является хорошим катионоактивным ПАВ.

Имеются и другие реагенты, используемые для снижения коррозионной активности раствора НСL.

2. Интенсификаторы - поверхностно-активные вещества (ПАВ), снижающие в 3 - 5 раз поверхностное натяжение па границе нефти - нейтрализованная кислота, ускоряющие и облегчающие очистку призабойной зоны от продуктов реакции и от отреагировавшей кислоты. Добавка ПАВ увеличивает эффективность кислотных обработок. Некоторые ингибиторы, такие как катапин А, катамин А, мервелан К (0), одновременно выполняют роль интенсификаторов, так как являются и активными ПАВами. В качестве интенсификаторов используют также такие ПАВы, как ОП-10, ОП-7, 44 - 11, 44 - 22 и ряд других. Учитывая потерю ПАВ на поверхности породы в результате абсорбции в головной части нагнетаемого раствора НСL, концентрацию реагента увеличивают примерно в 2 - 3 раза.



3. Стабилизаторы - вещества, необходимые для удерживания в растворенном состоянии некоторых продуктов реакции примесей раствора НСL с железом, цементом и песчаниками, а также для удаления из раствора соляной кислоты вредной примеси серной кислоты и превращения ее в растворимую соль бария



В этом случае раствор НСL перед закачкой в скважину обрабатывают раствором хлористого бария (BaCL2). Образующийся сернокислый барий (BaSO4) легко удерживается в растворе и удаляется из пор пласта в жидком состоянии вместе с другими продуктами реакции.

Соляная кислота, взаимодействуя с глинами, образует соли алюминия, а с цементом и песчаником - гель кремниевой кислоты, выпадающие в осадок. Для устранения этого и используют стабилизаторы - уксусную (СН3СООН) и плавиковую (HF) (фтористоводородную) кислоты, а также ряд других (лимонная, винная и др.).

Добавление плавиковой кислоты (HF) в количестве 1 - 2 % предупреждает образование геля кремниевой кислоты, закупоривающего поры коллектора, и способствует лучшему растворению цементной корки. Уксусная кислота (СН3СООН) удерживает в растворенном состоянии соли железа и алюминия и сильно замедляет реакцию раствора НСL с породой, что позволяет закачать концентрированный раствор НСL в более глубокие участки пласта.

Рабочий раствор кислоты готовят на центральных промысловых кислотных базах или редко у скважины. Существует строгая последовательность операции приготовления кислоты. Точный рецептурный состав компонентов и их количества определяют по соответствующим руководствам или расчетным таблицам в лабораториях или НИИ.

Для приготовления рабочего раствора в расчетное количество воды вводят сначала ингибитор и стабилизатор, затем техническую соляную кислоту. После перемешивания добавляют хлористый барий, снова перемешивают до исчезновения хлопьев хлористого бария, что контролируется анализом проб. Затем добавляют интенсификатор, перемешивают снова и далее дают возможность раствору отстояться до полного осветления и осаждения сернокислого бария.

Растворы НСL готовят с обязательным соблюдением правил по технике безопасности, которые предусматривают наличие специальной одежды, резиновых перчаток и очков. Особые меры предосторожности необходимы при обращении с фтористоводородной кислотой (HF), пары которой ядовиты.


Соляную кислоту перевозят в гуммированных железнодорожных цистернах или автоцистернах. Иногда для защиты железа цистерн от коррозии их внутри окрашивают в несколько слоев химически стойкой эмалью (ХСЭ-93). Фтористоводородную кислоту транспортируют в эбонитовых 20-литровых сосудах.

Различают несколько видов обработки соляной кислотой скважин, вскрывших карбонатные коллекторы: кислотные ванны, простые кислотные обработки и обработки под давлением ПЗС, термокислотные обработки, кислотные обработки через гидромониторные насадки, серийные поинтервальные кислотные обработки.

Кислотные ванны применяются во всех скважинах с открытым забоем после бурения и при освоении, для очистки поверхности забоя от остатков цементной и глинистой корки, продуктов коррозии, кальцитовых выделений из пластовых вод и др. Для скважин, забой которых обсажен колонной и перфорирован, кислотные ванны проводить не рекомендуют. Объем кислотного раствора должен быть равен объему скважины от забоя до кровли обрабатываемого интервала, а башмак НКТ, через который закачивают (раствор, спускается до подошвы пласта или забоя скважины. Применяется раствор НСL повышенной концентрации (15 - 20%), так как его перемешивания на забое не происходит.

Время выдержки для нейтрализации кислоты для данного месторождения устанавливается опытным путем по замерам концентрации кислоты в отработанном и вытесненном на поверхность через НКТ растворе.

Обычно время выдержки составляет 16 - 24 ч.

Таблица 5.1. Рекомендуемые объемы раствора НСL на 1 м толщины пласта

Порода

Объем раствоpa НСL, м3

при первичных

обработках

при вторичных

обработках

Малопроницаемые тонкопористые

0,4 - 0,6

0,6 - 1,0

Высокопроницаемые

0,5 - 1,0

1,0 - 1,5

Трещиноватые

0,6 - 0,8

1,0 - 1,5


Простые кислотные обработки - наиболее распространенные, осуществляются задавкой раствора НСL в ПЗС (табл. 5.1).

При многократных обработках для каждой последующей операции растворяющая способность раствора должна увеличиваться за счет наращивания объема закачиваемого раствора, повышения концентрации кислоты, а также и за счет увеличения скорости закачки. Исходная концентрация раствора - 12 %, максимальная - 20 %.


Простые кислотные обработки, как правило, осуществляются с помощью одного насосного агрегата в тщательно промытой и подготовленной скважине без применения повышенных температур и давления. При парафинистых и смолистых отложениях в НКТ и на забое их удаляют промывкой скважины соответствующими растворителями: керосином, пропан-бутановыми фракциями и другими нетоварными продуктами предприятий нефтехимии. При открытом забое кислотная обработка проводится только после кислотной ванны. После закачки расчетного объема раствора кислоты в НКТ закачивают продавочную жидкость в объеме, равном объему НКТ.

В качестве продавочной жидкости обычно используется нефть для добывающих скважин и вода с добавкой ПАВ типа ОП-10 для нагнетательных скважин. В процессе закачки раствора НСL уровень кислоты в межтрубном пространстве поддерживается у кровли пласта.

Время выдержки кислоты зависит от многих факторов. Лабораторные опыты показывают, что кислота реагирует с карбонатами очень быстро, особенно в пористой среде. Повышенная температура ускоряет реакцию, а, следовательно, сокращает время выдержки кислоты на забое. При низких температурах, открытом забое и сохранении объема кислоты в пределах обрабатываемого интервала выдержка продолжается от 8 до 24 ч, при задавливании всей кислоты в пласт при пластовой температуре 15 - 30 °С - до 2 ч, при температуре 30 - 60 °С - 1 - 1,5 ч. При более высоких температурах выдержка не планируется, так как перевод скважины на режим эксплуатации потребует больше времени, чем это нужно для полной нейтрализации кислоты.

Многочисленные опыты и исследования показали, что кислота в карбонатных породах не образует радиальных равномерно расходящихся каналов. Обычно это промоины - рукавообразные каналы неправильной формы, которые формируются преимущественно в каком-либо одном или нескольких направлениях. В пористых коллекторах с карбонатным цементирующим веществом (растворение протекает более равномерно вокруг ствола скважины или перфорационных отверстий. Но все равно образующиеся каналы растворения далеки от правильной радиальной системы. Увеличение глубины проникновения раствора кислоты в породу достигается увеличением концентрации НСL в исходном растворе и скорости прокачки, а также применением различных добавок, замедляющих реакцию.

Увеличение исходной концентрации - недостаточно эффективный способ, так как он вызывает коррозию металла и оборудования, способствует образованию нерастворимых осадков в продуктах реакции. Увеличение скорости закачки считается эффективным средством, но оно лимитируется поглотительной способностью скважины и мощностью применяемого насосного оборудования. Применение добавок - более эффективное средство. Количество уксусной кислоты в растворе, применяемом для замедления, увеличивают в несколько раз по сравнению с необходимым для стабилизации. Так, при ее содержании 4 - 5 % от общего объема раствора скорость нейтрализации замедляется в 4 - 5 раза. Это означает, что раствор сохранит свою активность на расстояниях (при одномерном движении) в 4 - 4,5 раз больших при прочих равных условиях.