Файл: Лекция общая характеристика нефтяной залежи. Понятие о нефтяной залежи. Механизм использования пластовой энергии при добыче нефти.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 1000

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1.1. Понятие о нефтяной залежи

1.2. Механизм использования пластовой энергии при добыче нефти

2.1. Пластовые давления

2.2. Приток жидкости к скважине

ЛЕКЦИЯ 3. РЕЖИМЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ

Водонапорный режим

2.5. Упругий режим

2.6. Режим газовой шапки

2.7. Режим растворенного газа

2.8. Гравитационный режим

4.1. Конструкция оборудования забоев скважин

4.2. Приток жидкости к перфорированной скважине

ЛЕКЦИЯ 5. ТЕХНИКА ПЕРФОРАЦИИ СКВАЖИН. ПЕСКОСТРУЙНАЯ ПЕРФОРАЦИЯ.

4.4. Пескоструйная перфорация

ЛЕКЦИЯ 6. МЕТОДЫ ОСВОЕНИЯ НЕФТЯНЫХ СКВАЖИН. ПЕРЕДВИЖНЫЕ КОМПРЕССОРНЫЕ УСТАНОВКИ. ОСВОЕНИЕ НАГНЕТАТЕЛЬНЫХ СКВАЖИН.

4.6. Передвижные компрессорные установки

4.7. Освоение нагнетательных скважин

Лекция 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.1. Назначение методов и их общая характеристика

5.2. Обработка скважин соляной кислотой

ЛЕКЦИЯ 8. ВОЗДЕЙСТВИЕ МЕТОДОМ ТЕРМОКИСЛОТНОЙ ОБРАБОТКИ.

5.4. Поинтервальная или ступенчатая СКО

5.5. Кислотные обработки терригенных коллекторов

5.6. Техника и технология кислотных обработок скважин

ЛЕКЦИЯ 9. ГИДРАВЛИЧЕСКИЙ РАЗРЫВ ПЛАСТА

5.8. Осуществление гидравлического разрыва

ЛЕКЦИЯ 10. ТЕХНИКА ИСПОЛЬЗУЕМАЯ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА

5.10. Тепловая обработка призабойной зоны скважины

ЛЕКЦИЯ 11. ТЕРМОГАЗОХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.12. Другие методы воздействия на призабойную зону скважин

Лекция 12. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН

8.1. Артезианское фонтанирование

8. 2. Фонтанирование за счет энергии газа

8. 3. Условие фонтанирования

ЛЕКЦИЯ 13. РАСЧЕТ ФОНТАННОГО ПОДЪЕМНИКА

8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления

Лекция 14. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН

9.1. Общие принципы газлифтной эксплуатации

9.2. Конструкции газлифтных подъемников

9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)

ЛЕКЦИЯ 15. МЕТОДЫ СНИЖЕНИЯ ПУСКОВЫХ ДАВЛЕНИЙ

9.5. Газлифтные клапаны Современная технология зксплуатации газлифтных скважин неразрывно связана с широким использованием глубинных клапанов специальной конструкции, с помощью которых устанавливается или прекращается связь между трубами и межтрубным пространством и регулируется поступление газа в НКТ. В настоящее время существует большое число глубинных клапанов разнообразных конструкций.Все клапаны по своему назначению можно разделить на три группы.1. Пусковые клапаны для пуска газлифтных скважин и их освоения.2. Рабочие клапаны для непрерывной или периодической работы газлифтных скважин, оптимизации режима их работы при изменяющихся условиях в скважине путем ступенчатого изменения места ввода газа в НКТ. При периодической эксплуатации через эти клапаны происходит переток газа в НКТ в те моменты, когда над клапаном накопится столб жидкости определенной высоты и эти клапаны перекрывают подачу газа после выброса из НКТ жидкости на поверхность.3. Концевые клапаны для поддержания уровня жидкости в межтрубном пространстве ниже клапана на некоторой глубине, что обеспечивает более равномерное поступление через клапан газа в НКТ и предотвращает пульсацию. Они устанавливаются вблизи башмака колонны труб.По конструктивному исполнению газлифтные клапаны очень разнообразны. В качестве упругого элемента в них используется либо пружина (пружинные клапаны), либо сильфонная камера, в которую заблаговременно закачан азот до определенного давления (сильфонные клапаны). В этих клапанах упругим элементом является сжатый азот. Существуют комбинированные клапаны, в которых используются и пружина, и сильфон. По принципу действия большинство клапанов являются дифференциальными, т. е. открываются или закрываются в зависимости от перепада давлений в межтрубном пространстве и в НКТ на уровне клапана. Они используются как в качестве пусковых, так и в качестве рабочих. В отечественной практике нефтедобычи пружинные клапаны были разработаны (А. П. Крылов и Г. В. Исаков) и испытаны на нефтяных промыслах Баку. Рис. 9.8. Принципиальная схема пружинного клапанаПружинный дифференциальный клапан (рис. 9.8) укрепляется на внешней стороне НКТ. Он имеет основной 1 и вспомогательный 2 штуцера. Газ поступает через отверстия 3, число которых можно изменять. На обоих концах штока 4 имеются две клапанные головки, причем пружины, натяжение которых регулируется гайкой 6, держат шток прижатым к нижнему штуцеру 2. Таким образом, нормально клапан открыт. При его обнажении газ через отверстие 3 и штуцер 1 проникает в НКТ и газирует в них жидкость. В результате давление в НКТ Рт падает, а Рк остается постоянным. Возникает сила, стремящаяся преодолеть натяжение пружины Рп и закрыть клапан. Если f2 - площадь сечения нижнего штуцера, Рт - давление внутри клапана (потерями на трение пренебрегаем), а Рк - давление, действующее на нижний клапан, то условие закрытия клапана запишется как или где Рзак = Рк - Рт - такая разность давлений, при которой преодолевается сила пружины Fп и клапан закрывается (закрывающий перепад). После закрытия верхняя головка прижмется к штуцеру 1, площадь которого f1 намного больше f2. При закрытии давление на клапане ниже штуцера 1 станет равным Рк. Оно будет действовать на большую площадь верхнего штуцера f1, и клапан будет надежно удерживаться в закрытом состоянии при условии Поскольку f1>> f2, то согласно (9.36) клапан будет оставаться закрытым даже при малом перепаде давлений Рк - Рт. При уменьшении разницы Рк - Рт до определенного минимума пружина преодолеет силу f1(Рк - Рт) и клапан откроется. Эта разница давлений называется открывающим перепадом. Таким образом, открытие клапана произойдет при условии Сопоставляя (9.35) и (9.37) и учитывая, что f1>> f2, можно видеть, что Рзак >> Рот. Величины Рзак и Рот можно регулировать, изменяя натяжение пружины регулировочной гайкой 6, а также изменением сечения f2 штуцера 2. Пропускная способность клапана по газу регулируется числом или размером отверстий 3. Важной характеристикой для клапана является зависимость его пропускной способности от перепада давлений на клапане (рис. 9.9). К моменту закрытия клапана и отсечки газа уровень жидкости в межтрубном пространстве обнажает следующий клапан, который вступает в действие вместо закрытого предыдущего. Рис. 9.9. Зависимость расхода газа через клапан от перепада давленийСильфонные клапаны бывают двух типов: работающие от давления в межтрубном пространстве Рк; работающие от давления в НКТ Рт. Сильфонный клапан, управляемый давлением Рк, (рис. 9.10), состоит из сильфонной камеры 1, заряженной азотом до давления. Эффективная площадь сечения сильфона fс. На штоке 2 имеется клапан 3, сечение седла которого fк. Через штуцерное отверстие 4 газ поступает из межтрубного пространства через клапан в НКТ. Рис. 9.10. Принципиальная схема клапана, управляемого давлением в межтрубном пространствеПри закрытом клапане давление Рк в нем будет действовать на площадь сильфона fс за вычетом площади клапана fк. Со стороны НКТ на площадь fк будет действовать давление Рт. Обе эти силы будут стремиться открыть клапан. Препятствовать открытию будет давление газа в сильфоне Рс, действующее на площадь fc. Открытие клапана произойдет, если Давление, при котором откроется клапан, будет равно или Деля числитель и знаменатель справа на fс и обозначая fк / fс =R, получим Это будет давление в межтрубном пространстве, при котором клапан откроется. Решая (9.38) относительно Рс - давления зарядки сильфона, найдем Это будет давление, которое необходимо создать в сильфонной камере при ее зарядке на поверхности при заданном давлении в межтрубном пространстве для открытия клапана (Рк)от.После открытия клапана давление внутри клапана будет действовать на всю площадь сильфона, поэтому будет справедливо равенство сил Непосредственно перед закрытием клапана в нем под сильфоном должно быть давление закрытия (Ра)зак Откуда видно, что (Рк)зак = Рс.Тогда разница открывающего и закрывающего перепадов будет равна После подстановки в (9.40) значения Рс согласно (9.39) найдем или Из (9.41) видно, что R = fк / fс является важной величиной, определяющей характеристику клапана.Обычно диаметр седла клапана колеблется в пределах от 3 до 12 мм, а R от 0,08 до 0,5. Однако действительная величина R из-за неучета сил трения газа в клапане меньше расчетной, определяемой формулой (9.41). Это означает, что эффективное значение R меньше действительного. Уменьшение составляет

2.1. Пластовые давления


Для правильного понимания всех технологических процессов и явлений, связанных с эксплуатацией нефтяных месторождений и скважин, необходимо уяснить ряд терминов для давлений, которые определяют или влияют на эти технологические процессы.

2.1.1. Статическое давление на забое скважины


Статическое давление - это давление на забое скважины, устанавливающееся после достаточно длительной ее остановки. Оно равно гидростатическому давлению столба жидкости в скважине высотой (по вертикали), равной расстоянию от уровня жидкости до глубины, на которой производится измерение. Обычно за такую глубину принимается середина интервала вскрытой толщины пласта. С другой стороны, это давление равно давлению внутри пласта, вскрытого скважинами, и поэтому оно называется пластовым давлением.

2.1.2. Статический уровень


Уровень столба жидкости, установившийся в скважине после ее остановки при условии, что на него действует атмосферное давление, называется статическим уровнем.

Если устье скважины герметизировано, то обычно в верхней части скважины скапливается газ, создающий некоторое давление на уровень жидкости. В этом случае уровень жидкости не называется статическим, хотя соответствует статическим условиям скважины, и давление на забое скважины равно сумме гидростатического давления столба жидкости и давления газа.

2.1.3. Динамическое давление на забое скважины


Это давление устанавливается на забое во время отбора жидкости или газа из скважины или во время закачки жидкости или газа в скважину. Динамическое давление на забое очень часто называют забойным давлением в отличие от статического, которое называют пластовым давлением. Однако и статическое, и динамическое давления в то же время являются забойными.

2.1.4. Динамический уровень жидкости


Уровень жидкости, который устанавливается в работающей скважине при условии, что на него действует атмосферное давление (межтрубное пространство открыто), называется динамическим уровнем.

При герметизированном затрубном пространстве динамическое давление будет равно сумме гидростатического давления столба жидкости от уровня до забоя и давления газа, действующего на уровень. Высота столба жидкости измеряется по вертикали. Поэтому в наклонных скважинах при вычислении гидростатических давлений должна делаться соответствующая поправка на кривизну скважины.

2.1.5. Среднее пластовое давление


По среднему пластовому давлению оценивают общее состояние пласта и его энергетическую характеристику, обусловливающую способы и возможности эксплуатации скважин. Статические давления в скважинах, расположенных в различных частях залежи и характеризующие локальные пластовые давления, могут быть неодинаковыми вследствие разной степени выработанности участков пласта, его неоднородности, прерывистости и ряда других причин. Поэтому используют понятие среднего пластового давления. Среднее пластовое давление Рср вычисляют по замерам статических давлений Рi в отдельных скважинах.

Среднее арифметическое давление из m измерений по отдельным скважинам

(2.1)

Эта величина неточно характеризует истинное среднеинтегральное пластовое давление и может от него сильно отличаться, например, при группировке скважин в одной какой-либо части залежи.

Средневзвешенное по площади пластовое давление

(2.2)

где fi - площадь, приходящаяся на i-ю скважину, Pi - статическое давление в i-й скважине, n - число скважин.

Это давление полнее характеризует энергетическое состояние пласта, однако не учитывает того, что толщина пласта на различных участках различна. Поэтому вводится понятие о средневзвешенном по объему пластовом давлении. Средневзвешенное по объему пласта давление учитывает не только площадь fi, приходящуюся на каждую скважину, но и среднюю толщину пласта hi в районе скважины. Таким образом,

(2.3)

Среднее пластовое давление определяют по картам изобар (линий равных давлений). Для этого измеряют планиметром площадь между каждыми двумя соседними изобарами, рассчитывают среднее пластовое давление на этой площади, как среднее арифметическое из значений давлений двух соседних изобар, и, умножая его на площадь между изобарами, суммируют. Общую сумму делят на суммарную площадь, в пределах которой проводится вычисление. Определенное таким образом среднее

давление ничем не отличается от того, которое получается по (2.2), и также является средневзвешенным по площади.

Если на карту изобар наложить карту полей равных толщин, то среднее пластовое давление можно вычислить как средневзвешенное по объему пласта, используя формулу (2.3). В этом случае fi - часть площади между двумя изобарами с одинаковыми толщинами hi, Pi - среднее давление между двумя изобарами. Этот способ дает наиболее объективную оценку среднего пластового давления.

2.1.6. Пластовое давление в зоне нагнетания


При поддержании пластового давления воду закачивают в нагнетательные скважины, которые располагают рядами. В зонах расположения нагнетательных скважин в пласте создается повышенное давление. Для характеристики процесса нагнетания и контроля за его динамикой пользуются понятием пластового давления в зоне нагнетания. С этой целью на карте изобар выделяют район размещения нагнетательных скважин,окружая их характерной изобарой, имеющей, например, значение первоначального пластового давления. В пределах этой изобары и определяют пластовые давления, как средневзвешенные по площади, используя формулу (2.2), или как средневзвешенные по объему, используя формулу (2.3) и дополнительно карту полей равных толщин.

2.1.7. Пластовое давление в зоне отбора


За пределами площади, ограниченной характерной изобарой, т. е. в районе добывающих скважин, также определяют среднее пластовое давление одним из трех названных методов и называют его пластовым давлением в зоне отбора. Во всех случаях предпочтительнее пластовое давление определять как средневзвешенное по объему пласта.

2.1.8. Начальное пластовое давление


Среднее пластовое давление, определенное по группе разведочных скважин в самом начале разработки, называется начальным пластовым давлением.

2.1.9. Текущее пластовое давление


В процессе разработки и эксплуатации пластовое давление меняется. Динамика пластового давления является важнейшим источником информации о состоянии объекта эксплуатации. Поэтому в различные моменты времени определяют среднее пластовое давление и строят графики изменения этого давления во времени. Это давление называют текущим пластовым давлением.

2.1.10. Приведенное давление


Для объективной оценки забойных давлений и возможности их сравнения вводится понятие приведенного давления. Измеренные или вычисленные забойные давления приводятся (пересчитываются) к условной горизонтальной плоскости, которой может быть принята любая плоскость в пределах залежи, абсолютная отметка которой известна.



Рис. 2.1. Схема наклонного пласта: 1- водонасыщенная часть пласта;

2 - первоначальный контакт; 3 - нефтенасыщенная часть; 4 - плоскость приведения
Обычно за плоскость приведения принимают плоскость, проходящую через первоначальный водонефтяной контакт, абсолютная отметка которого определяется при разведке месторождения. Если забои скважин сообщаются через проницаемый пласт, то в них устанавливаются одинаковые приведенные статические давления.

Приведенное давление (рис. 2.1) в скв. 1



а приведенное давление в скв. 2 будет



ρн - плотность нефти в пластовых условиях; g - ускорение силы тяжести; Δh1, Δh2 - разности гипсометрических отметок забоев скв. 1, 2 и плоскости приведения.

Если водонефтяной контакт поднялся на Δz, а плоскость приведения осталась прежней, то приведенные давления

для скв. 1 ,

для скв. 2 .

Здесь Δh1 и Δh2 - разность отметок забоев скважин и текущего положения водонефтяного контакта; ρв - плотность воды в пластовых условиях.

Кроме перечисленных давлений необходимо знать также давления на линии нагнетания и на линии отбора. Определение этих понятий будет дано в 3 главе при изложении методов поддержания пластового давления.

2.2. Приток жидкости к скважине


Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно сложно и не всегда поддается расчету. Лишь при геометрически правильном размещении скважин (линейные или кольцевые ряды скважин и правильные сетки), а также при ряде допущений (постоянство толщины, проницаемости и других параметров) удается аналитически рассчитать дебиты этих скважин при заданных давлениях на забоях или, наоборот, рассчитать давление при заданных дебитах. Однако вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.

Скорость фильтрации, согласно закону Дарси, записанному в дифференциальной форме, определяется следующим образом:

(2.4)

где k - проницаемость пласта; μ - динамическая вязкость; dp/dr - градиент давления вдоль радиуса (линии тока).

По всем линиям тока течение будет одинаковое. Другими словами, переменные, которыми являются скорость фильтрации и градиент давления, при изменении угловой координаты (в случае однородного пласта) останутся неизмененными, что позволяет оценить объемный расход жидкости q как произведение скорости фильтрации на площадь сечения пласта. В качестве площади может быть взята площадь сечения цилиндра 2πrh произвольного радиуса r, проведенного из центра скважины, где h - действительная толщина пласта, через который происходит фильтрация.

Тогда

. (2.5)

Обозначим

В общем случае предположим, что ε - гидропроводность - изменяется вдоль радиуса r, но так, что на одинаковых расстояниях от оси скважины вдоль любого радиуса величины ε одинаковые. Это случай так называемой кольцевой неоднородности.

Предположим, что ε задано в виде известной функции радиуса