Файл: Лекция общая характеристика нефтяной залежи. Понятие о нефтяной залежи. Механизм использования пластовой энергии при добыче нефти.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.11.2023
Просмотров: 1000
Скачиваний: 2
СОДЕРЖАНИЕ
1.1. Понятие о нефтяной залежи
1.2. Механизм использования пластовой энергии при добыче нефти
2.2. Приток жидкости к скважине
ЛЕКЦИЯ 3. РЕЖИМЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
4.1. Конструкция оборудования забоев скважин
4.2. Приток жидкости к перфорированной скважине
ЛЕКЦИЯ 5. ТЕХНИКА ПЕРФОРАЦИИ СКВАЖИН. ПЕСКОСТРУЙНАЯ ПЕРФОРАЦИЯ.
4.6. Передвижные компрессорные установки
4.7. Освоение нагнетательных скважин
Лекция 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.1. Назначение методов и их общая характеристика
5.2. Обработка скважин соляной кислотой
ЛЕКЦИЯ 8. ВОЗДЕЙСТВИЕ МЕТОДОМ ТЕРМОКИСЛОТНОЙ ОБРАБОТКИ.
5.4. Поинтервальная или ступенчатая СКО
5.5. Кислотные обработки терригенных коллекторов
5.6. Техника и технология кислотных обработок скважин
ЛЕКЦИЯ 9. ГИДРАВЛИЧЕСКИЙ РАЗРЫВ ПЛАСТА
5.8. Осуществление гидравлического разрыва
ЛЕКЦИЯ 10. ТЕХНИКА ИСПОЛЬЗУЕМАЯ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА
5.10. Тепловая обработка призабойной зоны скважины
ЛЕКЦИЯ 11. ТЕРМОГАЗОХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.12. Другие методы воздействия на призабойную зону скважин
Лекция 12. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН
8.1. Артезианское фонтанирование
8. 2. Фонтанирование за счет энергии газа
ЛЕКЦИЯ 13. РАСЧЕТ ФОНТАННОГО ПОДЪЕМНИКА
8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
Лекция 14. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН
9.1. Общие принципы газлифтной эксплуатации
9.2. Конструкции газлифтных подъемников
9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
2.1. Пластовые давления
Для правильного понимания всех технологических процессов и явлений, связанных с эксплуатацией нефтяных месторождений и скважин, необходимо уяснить ряд терминов для давлений, которые определяют или влияют на эти технологические процессы.
2.1.1. Статическое давление на забое скважины
Статическое давление - это давление на забое скважины, устанавливающееся после достаточно длительной ее остановки. Оно равно гидростатическому давлению столба жидкости в скважине высотой (по вертикали), равной расстоянию от уровня жидкости до глубины, на которой производится измерение. Обычно за такую глубину принимается середина интервала вскрытой толщины пласта. С другой стороны, это давление равно давлению внутри пласта, вскрытого скважинами, и поэтому оно называется пластовым давлением.
2.1.2. Статический уровень
Уровень столба жидкости, установившийся в скважине после ее остановки при условии, что на него действует атмосферное давление, называется статическим уровнем.
Если устье скважины герметизировано, то обычно в верхней части скважины скапливается газ, создающий некоторое давление на уровень жидкости. В этом случае уровень жидкости не называется статическим, хотя соответствует статическим условиям скважины, и давление на забое скважины равно сумме гидростатического давления столба жидкости и давления газа.
2.1.3. Динамическое давление на забое скважины
Это давление устанавливается на забое во время отбора жидкости или газа из скважины или во время закачки жидкости или газа в скважину. Динамическое давление на забое очень часто называют забойным давлением в отличие от статического, которое называют пластовым давлением. Однако и статическое, и динамическое давления в то же время являются забойными.
2.1.4. Динамический уровень жидкости
Уровень жидкости, который устанавливается в работающей скважине при условии, что на него действует атмосферное давление (межтрубное пространство открыто), называется динамическим уровнем.
При герметизированном затрубном пространстве динамическое давление будет равно сумме гидростатического давления столба жидкости от уровня до забоя и давления газа, действующего на уровень. Высота столба жидкости измеряется по вертикали. Поэтому в наклонных скважинах при вычислении гидростатических давлений должна делаться соответствующая поправка на кривизну скважины.
2.1.5. Среднее пластовое давление
По среднему пластовому давлению оценивают общее состояние пласта и его энергетическую характеристику, обусловливающую способы и возможности эксплуатации скважин. Статические давления в скважинах, расположенных в различных частях залежи и характеризующие локальные пластовые давления, могут быть неодинаковыми вследствие разной степени выработанности участков пласта, его неоднородности, прерывистости и ряда других причин. Поэтому используют понятие среднего пластового давления. Среднее пластовое давление Рср вычисляют по замерам статических давлений Рi в отдельных скважинах.
Среднее арифметическое давление из m измерений по отдельным скважинам
(2.1)
Эта величина неточно характеризует истинное среднеинтегральное пластовое давление и может от него сильно отличаться, например, при группировке скважин в одной какой-либо части залежи.
Средневзвешенное по площади пластовое давление
(2.2)
где fi - площадь, приходящаяся на i-ю скважину, Pi - статическое давление в i-й скважине, n - число скважин.
Это давление полнее характеризует энергетическое состояние пласта, однако не учитывает того, что толщина пласта на различных участках различна. Поэтому вводится понятие о средневзвешенном по объему пластовом давлении. Средневзвешенное по объему пласта давление учитывает не только площадь fi, приходящуюся на каждую скважину, но и среднюю толщину пласта hi в районе скважины. Таким образом,
(2.3)
Среднее пластовое давление определяют по картам изобар (линий равных давлений). Для этого измеряют планиметром площадь между каждыми двумя соседними изобарами, рассчитывают среднее пластовое давление на этой площади, как среднее арифметическое из значений давлений двух соседних изобар, и, умножая его на площадь между изобарами, суммируют. Общую сумму делят на суммарную площадь, в пределах которой проводится вычисление. Определенное таким образом среднее
давление ничем не отличается от того, которое получается по (2.2), и также является средневзвешенным по площади.
Если на карту изобар наложить карту полей равных толщин, то среднее пластовое давление можно вычислить как средневзвешенное по объему пласта, используя формулу (2.3). В этом случае fi - часть площади между двумя изобарами с одинаковыми толщинами hi, Pi - среднее давление между двумя изобарами. Этот способ дает наиболее объективную оценку среднего пластового давления.
2.1.6. Пластовое давление в зоне нагнетания
При поддержании пластового давления воду закачивают в нагнетательные скважины, которые располагают рядами. В зонах расположения нагнетательных скважин в пласте создается повышенное давление. Для характеристики процесса нагнетания и контроля за его динамикой пользуются понятием пластового давления в зоне нагнетания. С этой целью на карте изобар выделяют район размещения нагнетательных скважин,окружая их характерной изобарой, имеющей, например, значение первоначального пластового давления. В пределах этой изобары и определяют пластовые давления, как средневзвешенные по площади, используя формулу (2.2), или как средневзвешенные по объему, используя формулу (2.3) и дополнительно карту полей равных толщин.
2.1.7. Пластовое давление в зоне отбора
За пределами площади, ограниченной характерной изобарой, т. е. в районе добывающих скважин, также определяют среднее пластовое давление одним из трех названных методов и называют его пластовым давлением в зоне отбора. Во всех случаях предпочтительнее пластовое давление определять как средневзвешенное по объему пласта.
2.1.8. Начальное пластовое давление
Среднее пластовое давление, определенное по группе разведочных скважин в самом начале разработки, называется начальным пластовым давлением.
2.1.9. Текущее пластовое давление
В процессе разработки и эксплуатации пластовое давление меняется. Динамика пластового давления является важнейшим источником информации о состоянии объекта эксплуатации. Поэтому в различные моменты времени определяют среднее пластовое давление и строят графики изменения этого давления во времени. Это давление называют текущим пластовым давлением.
2.1.10. Приведенное давление
Для объективной оценки забойных давлений и возможности их сравнения вводится понятие приведенного давления. Измеренные или вычисленные забойные давления приводятся (пересчитываются) к условной горизонтальной плоскости, которой может быть принята любая плоскость в пределах залежи, абсолютная отметка которой известна.
Рис. 2.1. Схема наклонного пласта: 1- водонасыщенная часть пласта;
2 - первоначальный контакт; 3 - нефтенасыщенная часть; 4 - плоскость приведения
Обычно за плоскость приведения принимают плоскость, проходящую через первоначальный водонефтяной контакт, абсолютная отметка которого определяется при разведке месторождения. Если забои скважин сообщаются через проницаемый пласт, то в них устанавливаются одинаковые приведенные статические давления.
Приведенное давление (рис. 2.1) в скв. 1
а приведенное давление в скв. 2 будет
ρн - плотность нефти в пластовых условиях; g - ускорение силы тяжести; Δh1, Δh2 - разности гипсометрических отметок забоев скв. 1, 2 и плоскости приведения.
Если водонефтяной контакт поднялся на Δz, а плоскость приведения осталась прежней, то приведенные давления
для скв. 1 ,
для скв. 2 .
Здесь Δh1 и Δh2 - разность отметок забоев скважин и текущего положения водонефтяного контакта; ρв - плотность воды в пластовых условиях.
Кроме перечисленных давлений необходимо знать также давления на линии нагнетания и на линии отбора. Определение этих понятий будет дано в 3 главе при изложении методов поддержания пластового давления.
2.2. Приток жидкости к скважине
Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно сложно и не всегда поддается расчету. Лишь при геометрически правильном размещении скважин (линейные или кольцевые ряды скважин и правильные сетки), а также при ряде допущений (постоянство толщины, проницаемости и других параметров) удается аналитически рассчитать дебиты этих скважин при заданных давлениях на забоях или, наоборот, рассчитать давление при заданных дебитах. Однако вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.
Скорость фильтрации, согласно закону Дарси, записанному в дифференциальной форме, определяется следующим образом:
(2.4)
где k - проницаемость пласта; μ - динамическая вязкость; dp/dr - градиент давления вдоль радиуса (линии тока).
По всем линиям тока течение будет одинаковое. Другими словами, переменные, которыми являются скорость фильтрации и градиент давления, при изменении угловой координаты (в случае однородного пласта) останутся неизмененными, что позволяет оценить объемный расход жидкости q как произведение скорости фильтрации на площадь сечения пласта. В качестве площади может быть взята площадь сечения цилиндра 2πrh произвольного радиуса r, проведенного из центра скважины, где h - действительная толщина пласта, через который происходит фильтрация.
Тогда
. (2.5)
Обозначим
В общем случае предположим, что ε - гидропроводность - изменяется вдоль радиуса r, но так, что на одинаковых расстояниях от оси скважины вдоль любого радиуса величины ε одинаковые. Это случай так называемой кольцевой неоднородности.
Предположим, что ε задано в виде известной функции радиуса