Файл: Лекция общая характеристика нефтяной залежи. Понятие о нефтяной залежи. Механизм использования пластовой энергии при добыче нефти.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 580

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1.1. Понятие о нефтяной залежи

1.2. Механизм использования пластовой энергии при добыче нефти

2.1. Пластовые давления

2.2. Приток жидкости к скважине

ЛЕКЦИЯ 3. РЕЖИМЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ

Водонапорный режим

2.5. Упругий режим

2.6. Режим газовой шапки

2.7. Режим растворенного газа

2.8. Гравитационный режим

4.1. Конструкция оборудования забоев скважин

4.2. Приток жидкости к перфорированной скважине

ЛЕКЦИЯ 5. ТЕХНИКА ПЕРФОРАЦИИ СКВАЖИН. ПЕСКОСТРУЙНАЯ ПЕРФОРАЦИЯ.

4.4. Пескоструйная перфорация

ЛЕКЦИЯ 6. МЕТОДЫ ОСВОЕНИЯ НЕФТЯНЫХ СКВАЖИН. ПЕРЕДВИЖНЫЕ КОМПРЕССОРНЫЕ УСТАНОВКИ. ОСВОЕНИЕ НАГНЕТАТЕЛЬНЫХ СКВАЖИН.

4.6. Передвижные компрессорные установки

4.7. Освоение нагнетательных скважин

Лекция 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.1. Назначение методов и их общая характеристика

5.2. Обработка скважин соляной кислотой

ЛЕКЦИЯ 8. ВОЗДЕЙСТВИЕ МЕТОДОМ ТЕРМОКИСЛОТНОЙ ОБРАБОТКИ.

5.4. Поинтервальная или ступенчатая СКО

5.5. Кислотные обработки терригенных коллекторов

5.6. Техника и технология кислотных обработок скважин

ЛЕКЦИЯ 9. ГИДРАВЛИЧЕСКИЙ РАЗРЫВ ПЛАСТА

5.8. Осуществление гидравлического разрыва

ЛЕКЦИЯ 10. ТЕХНИКА ИСПОЛЬЗУЕМАЯ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА

5.10. Тепловая обработка призабойной зоны скважины

ЛЕКЦИЯ 11. ТЕРМОГАЗОХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ

5.12. Другие методы воздействия на призабойную зону скважин

Лекция 12. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН

8.1. Артезианское фонтанирование

8. 2. Фонтанирование за счет энергии газа

8. 3. Условие фонтанирования

ЛЕКЦИЯ 13. РАСЧЕТ ФОНТАННОГО ПОДЪЕМНИКА

8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления

Лекция 14. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН

9.1. Общие принципы газлифтной эксплуатации

9.2. Конструкции газлифтных подъемников

9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)

ЛЕКЦИЯ 15. МЕТОДЫ СНИЖЕНИЯ ПУСКОВЫХ ДАВЛЕНИЙ

9.5. Газлифтные клапаны Современная технология зксплуатации газлифтных скважин неразрывно связана с широким использованием глубинных клапанов специальной конструкции, с помощью которых устанавливается или прекращается связь между трубами и межтрубным пространством и регулируется поступление газа в НКТ. В настоящее время существует большое число глубинных клапанов разнообразных конструкций.Все клапаны по своему назначению можно разделить на три группы.1. Пусковые клапаны для пуска газлифтных скважин и их освоения.2. Рабочие клапаны для непрерывной или периодической работы газлифтных скважин, оптимизации режима их работы при изменяющихся условиях в скважине путем ступенчатого изменения места ввода газа в НКТ. При периодической эксплуатации через эти клапаны происходит переток газа в НКТ в те моменты, когда над клапаном накопится столб жидкости определенной высоты и эти клапаны перекрывают подачу газа после выброса из НКТ жидкости на поверхность.3. Концевые клапаны для поддержания уровня жидкости в межтрубном пространстве ниже клапана на некоторой глубине, что обеспечивает более равномерное поступление через клапан газа в НКТ и предотвращает пульсацию. Они устанавливаются вблизи башмака колонны труб.По конструктивному исполнению газлифтные клапаны очень разнообразны. В качестве упругого элемента в них используется либо пружина (пружинные клапаны), либо сильфонная камера, в которую заблаговременно закачан азот до определенного давления (сильфонные клапаны). В этих клапанах упругим элементом является сжатый азот. Существуют комбинированные клапаны, в которых используются и пружина, и сильфон. По принципу действия большинство клапанов являются дифференциальными, т. е. открываются или закрываются в зависимости от перепада давлений в межтрубном пространстве и в НКТ на уровне клапана. Они используются как в качестве пусковых, так и в качестве рабочих. В отечественной практике нефтедобычи пружинные клапаны были разработаны (А. П. Крылов и Г. В. Исаков) и испытаны на нефтяных промыслах Баку. Рис. 9.8. Принципиальная схема пружинного клапанаПружинный дифференциальный клапан (рис. 9.8) укрепляется на внешней стороне НКТ. Он имеет основной 1 и вспомогательный 2 штуцера. Газ поступает через отверстия 3, число которых можно изменять. На обоих концах штока 4 имеются две клапанные головки, причем пружины, натяжение которых регулируется гайкой 6, держат шток прижатым к нижнему штуцеру 2. Таким образом, нормально клапан открыт. При его обнажении газ через отверстие 3 и штуцер 1 проникает в НКТ и газирует в них жидкость. В результате давление в НКТ Рт падает, а Рк остается постоянным. Возникает сила, стремящаяся преодолеть натяжение пружины Рп и закрыть клапан. Если f2 - площадь сечения нижнего штуцера, Рт - давление внутри клапана (потерями на трение пренебрегаем), а Рк - давление, действующее на нижний клапан, то условие закрытия клапана запишется как или где Рзак = Рк - Рт - такая разность давлений, при которой преодолевается сила пружины Fп и клапан закрывается (закрывающий перепад). После закрытия верхняя головка прижмется к штуцеру 1, площадь которого f1 намного больше f2. При закрытии давление на клапане ниже штуцера 1 станет равным Рк. Оно будет действовать на большую площадь верхнего штуцера f1, и клапан будет надежно удерживаться в закрытом состоянии при условии Поскольку f1>> f2, то согласно (9.36) клапан будет оставаться закрытым даже при малом перепаде давлений Рк - Рт. При уменьшении разницы Рк - Рт до определенного минимума пружина преодолеет силу f1(Рк - Рт) и клапан откроется. Эта разница давлений называется открывающим перепадом. Таким образом, открытие клапана произойдет при условии Сопоставляя (9.35) и (9.37) и учитывая, что f1>> f2, можно видеть, что Рзак >> Рот. Величины Рзак и Рот можно регулировать, изменяя натяжение пружины регулировочной гайкой 6, а также изменением сечения f2 штуцера 2. Пропускная способность клапана по газу регулируется числом или размером отверстий 3. Важной характеристикой для клапана является зависимость его пропускной способности от перепада давлений на клапане (рис. 9.9). К моменту закрытия клапана и отсечки газа уровень жидкости в межтрубном пространстве обнажает следующий клапан, который вступает в действие вместо закрытого предыдущего. Рис. 9.9. Зависимость расхода газа через клапан от перепада давленийСильфонные клапаны бывают двух типов: работающие от давления в межтрубном пространстве Рк; работающие от давления в НКТ Рт. Сильфонный клапан, управляемый давлением Рк, (рис. 9.10), состоит из сильфонной камеры 1, заряженной азотом до давления. Эффективная площадь сечения сильфона fс. На штоке 2 имеется клапан 3, сечение седла которого fк. Через штуцерное отверстие 4 газ поступает из межтрубного пространства через клапан в НКТ. Рис. 9.10. Принципиальная схема клапана, управляемого давлением в межтрубном пространствеПри закрытом клапане давление Рк в нем будет действовать на площадь сильфона fс за вычетом площади клапана fк. Со стороны НКТ на площадь fк будет действовать давление Рт. Обе эти силы будут стремиться открыть клапан. Препятствовать открытию будет давление газа в сильфоне Рс, действующее на площадь fc. Открытие клапана произойдет, если Давление, при котором откроется клапан, будет равно или Деля числитель и знаменатель справа на fс и обозначая fк / fс =R, получим Это будет давление в межтрубном пространстве, при котором клапан откроется. Решая (9.38) относительно Рс - давления зарядки сильфона, найдем Это будет давление, которое необходимо создать в сильфонной камере при ее зарядке на поверхности при заданном давлении в межтрубном пространстве для открытия клапана (Рк)от.После открытия клапана давление внутри клапана будет действовать на всю площадь сильфона, поэтому будет справедливо равенство сил Непосредственно перед закрытием клапана в нем под сильфоном должно быть давление закрытия (Ра)зак Откуда видно, что (Рк)зак = Рс.Тогда разница открывающего и закрывающего перепадов будет равна После подстановки в (9.40) значения Рс согласно (9.39) найдем или Из (9.41) видно, что R = fк / fс является важной величиной, определяющей характеристику клапана.Обычно диаметр седла клапана колеблется в пределах от 3 до 12 мм, а R от 0,08 до 0,5. Однако действительная величина R из-за неучета сил трения газа в клапане меньше расчетной, определяемой формулой (9.41). Это означает, что эффективное значение R меньше действительного. Уменьшение составляет

5.8. Осуществление гидравлического разрыва


Осуществление ГРП рекомендуется в следующих скважинах.

  1. Давших при опробовании слабый приток.

  2. С высоким пластовым давлением, но с низкой проницаемостью коллектора.

  3. С загрязненной призабойной зоной.

  4. С заниженной продуктивностью.

  5. С высоким газовым фактором (по сравнению с окружающими).

  6. Нагнетательных с низкой приемистостью.

  7. Нагнетательных для расширения интервала поглощения.

Не рекомендуется проводить ГРП в скважинах, технически неисправных и расположенных близко от контура водоносности или от газовой шапки. Очевидно, что эффективность ГРП зависит от размеров трещины. В зарубежной литературе приводится формула для оценки радиуса трещины

, (5.10)

Причем для коэффициента С рекомендованы такие значения: для скважин глубиной H = 600м - С = 0,025; для скважин с глубиной Н = 3000 м - C = 0,0173.

Используя линейную интерполяцию, можно получить для С следующее выражение:

, (5.11)

Подставляя (5.11) в (5.10), получим

, (5.12)

где Q - подача насосных агрегатов при ГРП, л/мин;  - динамическая вязкость жидкости разрыва, мПас; t - продолжительность закачки жидкости, мин; k - проницаемость пласта; Н - глубина залегания пласта, м. Формула (5.12), переведенная в СИ, имеет вид

, (5.13)

где Q - л/с;  - Пас; t - с; k - м2; H - м; rт - м.

Определение ширины трещины затруднительно, хотя и имеются формулы для ее вычисления. У стенки скважины ширина трещины наибольшая и к концу убывает до нуля. При закачке в пласт маловязкой жидкости, легко проникающей в горизонтальный проницаемый прослой, возникает, как правило, горизонтальная трещина, в которой давление превышает локальное горное. В результате происходит упругое расщепление пласта по наиболее слабым плоскостям. При закачке нефильтрующейся жидкости образуются вертикальные трещины, так как вслед-ствие отсутствия фильтрации в пласт явление разрыва становится подобным разрыву длинной трубы с бесконечно толстыми стенками. При наличии в пласте естественных трещин разрыв будет происходить по их плоскостям независимо от фильтруемости жидкости.


Предугадать эти явления, конечно, трудно. В специальной литературе приводится формула для определения ширины и объема вертикальной трещины

, (5.14)

где w - ширина вертикальной трещины у стенки скважины;  - коэффициент Пуассона (примерно 0,1 - 0,2); р - превышение давления на забое скважины над локальным горным; Е - модуль Юнга для горной породы [примерно (1 - 2)102 МПа]; L - длина трещины.

Полагая, что вертикальная трещина имеет форму клина с основанием w высотой L и длиной h., равной толщине пласта, получим ее объем

, (5.15)

Имеется ряд других формул для вертикальных и горизонтальных трещин (Ю. П. Желтов и С. А. Христианович). Однако они достаточно сложны для использования.

Таблица 5.2.

Оценка размеров горизонтальных трещин

Площади трещины, м2

Эквивалент- ный радиус, м

Объем трещины, м3 , при ширине

2 см

1 см

0,5 см

0,25 см

20

2,523

0,4

0,2

0,1

0,05

40

3,570

0,8

0,4

0,2

0,1

80

5,046

1,6

0,8

0,4

0,2

160

7,136

3,2

1,6

0,8

0,4

320

10,092

6,4

3,2

1,6

0,8

640

14,273

12,8

6,4

3,2

1,6


По различным оценкам ширина трещин может достигать нескольких сантиметров. Имеются факты закачки в трещины при ГРП шариков диаметром более 1 см, которые заклинивались в трещинах и не извлекались при последующей эксплуатации скважины. Количество закачиваемого песка при обычном однократном разрыве составляет 2 - 6 т. Известны успешные операции ГРП, при которых количество закачанного песка достигало нескольких десятков тонн. Все это подтверждает, что раскрытие трещин и их протяженность получаются достаточно большими. Объем трещины Vт можно определить как произведение ее площади на среднюю толщину. Приравнивая площадь трещины f равновеликому кругу, найдем приближенно ее объем



, (5.16)

Оценка размеров горизонтальной трещины и ее объема по (5.16) показывает следующие результаты (табл. 5.2). Скорость движения жидкости-песконосителя с увеличением радиуса трещины также уменьшается.

Следует, однако, иметь в виду, что не вся жидкость, закачиваемая агрегатами, движется по трещине. Часть отфильтровывается через стенки трещины в пласт, что снижает скорость движения жидкости по трещине, затрудняя или вовсе прекращая перенос песка по трещине. Поэтому важно для достижения положительных результатов ГРП применять песконосительную жидкость с низкой фильтруемостью и закачивать ее с большой скоростью.

Для оценки гидродинамической эффективности ГРП необходимо знать уравнение радиального притока жидкости к скважине, имеющей в призабойной зоне трещину. Эта задача в строгой постановке сложна. Достаточно точные результаты в свое время были получены автором методом электролитического моделирования для различных случаев расположения горизонтальных и вертикальных трещин, их размера и их проницаемости.

Обработка результатов электромоделирования позволила получить следующую формулу для оценки гидродинамической эффективности ГРП в скважине с открытым забоем:

, (5.17)

где - кратность увеличения дебита после ГРП; Qт - дебит скважины после ГРП; Qo - дебит до ГРП при прочих равных условиях; Nв - коэффициент, зависящий от величины b = h/2rc; h - толщина пласта; rт - радиус трещины; rc - радиус скважины; n(b) - коэффициент, также зависящий от b (табл. 5.3).

Для промежуточных значений b соответствующие величины n и N находятся интерполяцией. Имеются приближенные формулы для оценки гидродинамической эффективности ГРП. Например, можно предположить, что вся притекающая к скважине жидкость на расстоянии r = rт попадает в трещину и далее без сопротивления движется по ней до стенки скважины. Это соответствует радиальному притоку жидкости к скважине с радиусом, равным радиусу трещины rт. В таком случае можно записать

, (5.18)

Деля (5.18) на дебит Qo несовершенной скважины, имеющей приведенный радиус rпр, получим

, (5.19)

Числовые оценки показывают
, что при Rк = 200 м; rпр = rс = 0,1 м; rт = 20 м  = 3,3; при Rк = 400 м; rпр = rс = 0,1 м; rт = 10 м  = 2,25.

Таблица 5.3.

Значения коэффициентов N(b) и n(b)

b

n (b)

N (b)

17,0

0,44

0,15

22,72

0,55

0,106

28,41

0,61

0,064

38,65

0,70

0,041

89,80

0,93

0,0108


Таким образом, дебит в лучшем случае увеличивается в 2 - 3 раза. При другой схематизации течения жидкости к скважине предполагается что от контура питания Rк до радиуса r = rт жидкость движется по пласту, имеющему гидропроводность , а от радиуса r = rт до стенки скважины r = rc по трещине с гидропроводностью . Здесь k2 - проницаемость трещины и w - ширина трещины (раскрытость). При такой схематизации приток может быть выражен через сумму фильтрацнонных сопротивлении этих двух областей, а именно:

, (5.20)

Деля (5.20) на дебит несовершенной скважины, имеющей приведенный радиус rпр, т. е. на



получим после некоторых сокращений

, (5.21)
Деля числитель и знаменатель на 1/k1h1 , получим
, (5.22)

При rпр = rс, т. е. при гидродинамически совершенной скважине, оценки значений по формуле (5.22) будут еще меньше, чем в предыдущем случае [формула (5.19)]. Практически значения (р часто бывают намного больше. Это может быть объяснено плохим гидродинамическим совершенством скважины до ГРП (малым значением rпр), вызванным различными причинами, как, например, отложением парафина или глинистого раствора в ПЗС, малой плотностью перфораций цли отложениями солей. Создание хорошего филь-трационного канала в виде трещины может существенно снизить фильтрационное сопротивление в ПЗС.


Выше была рассмотрена гидродинамическая эффективность ГРП в монолитном однородном пласте. Если пласт сложен из нескольких самостоятельных пропластков, эффективность ГРП в таком пласте будет значительно меньше, так как образование трещины (хотя и большой) в одном пропластке может существенно изменить приток жидкости только из этого пропластка, но не суммарный приток из всех пропластков. Приток жидкости из нескольких пропластков можно записать как сумму

, (5.23)

Если в результате ГРП в одном (скажем, в первом) пропластке произошло увеличение дебита в 4 раза, ( = 4) то новый дебит скважины будет равен

, (5.24)

В таком случае кратность увеличения дебита скважины после гидроразрыва слоистого пласта составит

, (5.25)

Прибавляя и отнимая в числителе q1 получим после упрощений и деления

. (5.26)

Поскольку приток из одного пропластка q1 мал по сравнению с притоком всех пропластков q i то общее увеличение дебита такой слоистой системы  i будет также мало. В таком случае надлежащий эффект в многослойном пласте или в пласте со слоистой неоднородностью по разрезу может быть достигнут двумя методами:

1. Либо созданием одной вертикальной трещины, рассекающей все прослои, за одну операцию ГРП.

2. Либо созданием горизонтальных трещин в каждом пропластке при поинтервальном или многократном ГРП.

К сожалению, управлять процессом образования трещин практически невозможно. Имеются основания полагать (вытекающие из теоретических предпосылок), что вероятность образования вертикальной трещины больше при закачке нефильтрующейся жидкости разрыва.

Многократный разрыв - это осуществление нескольких разрывов в пласте за 'одну операцию. В этом случае после регистрации разрыва какого-то прослоя и введения в него нужного количества наполнителя в нагнетаемый поток жидкости вводятся упругие пластмассовые шарики, плотность которых примерно равна плотности жидкости. Потоком жидкости шарики увлекаются и закрывают те перфорационные отверстия, через которые расход жидкости наибольший. Диаметр этих шариков примерно 12 - 18 мм, так что один шарик может перекрывать одно перфорационное отверстие. Этим достигается уменьшение или даже прекращение потока жидкости в образовавшуюся трещину. Давление на забое возрастает и это вызывает образование новой трещины в другом прослое, что регистрируется на поверхности изменением коэффициентов поглотительной способности скважины. После этого в поток снова вводятся шарики без снижения давления через специальное лубрикаторное устройство, устанавливаемое на устье скважины для закупорки второй образовавшейся трещины. Разработаны и иные технологические приемы многократного ГРП с использованием закупоривающих шаров, а также с помощью временно закупоривающих мелкодисперсных веществ (нафталин), которые растворяются в нефти при последующей эксплуатации скважины. При последующем дренировании скважины закачанные шарики вымываются на поверхность и открывают все образовавшиеся трещины.