Файл: Лекция общая характеристика нефтяной залежи. Понятие о нефтяной залежи. Механизм использования пластовой энергии при добыче нефти.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.11.2023
Просмотров: 1010
Скачиваний: 2
СОДЕРЖАНИЕ
1.1. Понятие о нефтяной залежи
1.2. Механизм использования пластовой энергии при добыче нефти
2.2. Приток жидкости к скважине
ЛЕКЦИЯ 3. РЕЖИМЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
4.1. Конструкция оборудования забоев скважин
4.2. Приток жидкости к перфорированной скважине
ЛЕКЦИЯ 5. ТЕХНИКА ПЕРФОРАЦИИ СКВАЖИН. ПЕСКОСТРУЙНАЯ ПЕРФОРАЦИЯ.
4.6. Передвижные компрессорные установки
4.7. Освоение нагнетательных скважин
Лекция 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.1. Назначение методов и их общая характеристика
5.2. Обработка скважин соляной кислотой
ЛЕКЦИЯ 8. ВОЗДЕЙСТВИЕ МЕТОДОМ ТЕРМОКИСЛОТНОЙ ОБРАБОТКИ.
5.4. Поинтервальная или ступенчатая СКО
5.5. Кислотные обработки терригенных коллекторов
5.6. Техника и технология кислотных обработок скважин
ЛЕКЦИЯ 9. ГИДРАВЛИЧЕСКИЙ РАЗРЫВ ПЛАСТА
5.8. Осуществление гидравлического разрыва
ЛЕКЦИЯ 10. ТЕХНИКА ИСПОЛЬЗУЕМАЯ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА
5.10. Тепловая обработка призабойной зоны скважины
ЛЕКЦИЯ 11. ТЕРМОГАЗОХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.12. Другие методы воздействия на призабойную зону скважин
Лекция 12. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН
8.1. Артезианское фонтанирование
8. 2. Фонтанирование за счет энергии газа
ЛЕКЦИЯ 13. РАСЧЕТ ФОНТАННОГО ПОДЪЕМНИКА
8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
Лекция 14. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН
9.1. Общие принципы газлифтной эксплуатации
9.2. Конструкции газлифтных подъемников
9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
Расчет фонтанного подъемника с использованием приведенных выше формул сводится к определению для проектируемой скважины максимальной и оптимальной подач. Планируемый дебит скважины, определяемый формулой притока, должен лежать в пределах между qmax и qопт. Это гарантирует высокий к. п. д. газожидкостного подъемника и устойчивую его работу. Такой подход к расчету оптимизирует работу фонтанного подъемника для текущих условий, но не учитывает возможных изменений условий фонтанирования во времени. Обычно с течением времени условия фонтанирования ухудшаются: растет обводненность, пластовое давление падает, эффективный газовый фактор уменьшается, коэффициент продуктивности также уменьшается. Поэтому, планируя фонтанную эксплуатацию, рекомендуют рассчитывать фонтанные подъемники по максимальной подаче для начальных условий и по оптимальной - для условий конца периода фонтанирования.
Дебит фонтанной скважины определяется совместной работой пласта и фонтанного подъемника; причем законы, управляющие работой пласта, одни, а законы, управляющие процессом движения ГЖС в фонтанных трубах, - другие. Совершенно очевидно, что увеличение давления на забое Рс снижает приток жидкости из пласта. С другой стороны то же увеличение Рс (или Рб) увеличивает подачу фонтанного подъемника. Поэтому если пропускная способность фонтанного подъемника меньше притока, избыточная жидкость будет накапливаться в скважине. В результате давление Рс будет расти. Это повлечет за собой увеличение подачи подъемника, с одной стороны, и снижение притока - с другой. Установившаяся работа этой системы пласт - скважина наступает тогда, когда приток сравняется с отбором.
Этой установившейся работе системы пласт - скважина будет соответствовать некоторое давление на забое Рс , которое может быть найдено из условия равенства притока и подачи фонтанного подъемника.
Как известно, приток определяется формулой
, (8.50)
Пропускная способность подъемника па режиме максимальной подачи определяется формулой (8.46). Если трубы спущены до забоя, то Рб = Рс. Если они подняты выше так что L < H, то
, (8.51)
С учетом (8.51) формула (8.50) перепишется так:
. (8.52)
Приравнивая правые части формулы притока (8.52) и формулы пропускной способности подъемника (8.46), получим
. (8.53)
Равенство (8.53) удовлетворяется при определенном значении Рб, так как остальные величины задаются. Левая часть равенства (8.53) сростом Рб уменьшается нелинейно. Правая часть возрастает по параболе в степени 1,5. Пересечение этих двух кривых дает такое значение Рб, при котором равенство (8.53) удовлетворяется. Решение равенства (8.53) получается либо путем подбора Рб, либо графоаналитическим путем подобно тому, как это делалось при определении минимального давления фонтанирования.
Затем определяется соответствующий дебит скважины путем подстановки найденного значения Рб либо в (8.52), либо в (8.46).
Найденный таким образом, дебит, отвечающий совместной работе пласта и фонтанного подъемника, соответствует работе фонтанного подъемника при режиме максимальной подачи. Аналогично можно найти дебит подъемника на режиме оптимальной подачи. Для этой цели необходимо приравнять правые части формулы притока (8.52) и формулы оптимальной подачи (8.47):
. (8.54)
Из равенства (8.54) подбором или нахождением точки пересечения двух кривых, соответствующих левой и правой части уравнения, определяется сначала давление Рб, а потом по формуле притока - соответствующий дебит скважины, удовлетворяющий условию совместной работе пласта и фонтанного подъемника на режиме оптимальной производительности. Если выделение газа начинается не на забое, а в фонтанных трубах, как известно, в равенства (8.53) и (8.54) вместо Рб необходимо подставлять давление насыщения Рнас и вместо длины труб L - глубину начала выделения газа Lнас.
Однако в этом случае для решения уравнения (8.54) варьировать величиной Рб = Рнас нельзя, так как она постоянна. Решение достигается подбором такой величины L = Lнас, которая делает правую и левую части (8.54) равными. Аналогично следует поступить и при решении уравнения (8.53) для
согласования работы пласта и подъемника, работающего на режиме максимальной производительности в случае, если газ начинает выделяться внутри НКТ. Поскольку Рнас постоянно, равенство правой и левой частей (8.53) достигается подбором.
На рис. 8.4 показано определение забойных давлений Рс и соответствующих им дебитов при согласованной работе пласта и фонтанного подъемника на режимах максимальной и оптимальной производительности путем графоаналитического решения уравнений (8.53) и (8.54).
Рис. 8.4. Графоаналитическое определение условий совместной работы пласта и газожидкостного подъемника: 1 - зависимость подачи подъемника от давления у башмака Рб на режиме максимальной производительности; 2 - зависимость притока от давления Рб; 3 - зависимость подачи подъемника от Рб на режиме оптимальной производительности
Показанные на рис. 8.4 графики построены для следующих исходных данных:
Рпл = 170·105 Па; Ру = 5·105 Па; Рб = Рс; L = H = 2000 м; ρ = 900 кг/м3; d = 0,0503 м (5,03 см);
К = 3,588·10-5 м3 / Па·с; n = 0,92; Рб изменяется от 150·105 Па до 50·105 Па.
На оси абсцисс графика отложено давление на забое Рс, или Рб, так как L = H (башмак на забое). На оси ординат отложена максимальная qmax, оптимальная qопт подачи и приток жидкости из пласта qп. Как видно из рисунка, согласование работы пласта и подъемника происходит при давлении на забое Рс = 8,55 МПа (пересечение линий 1 и 2) на режиме максимальной подачи, при этом дебит скважины qmax = 212·10-5 м3/с (183,2 м3/сут) и при давлении на забое Рс = 12,1 МПа (пересечение линий 2 и 3) на режиме оптимальной подачи при дебите qопт = 130·10-5 м3/с (112,3 м3сут).
8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
Умение рассчитывать при любых заданных условиях кривую распределения давления вдоль НКТ при движении по ним газожидкостной смеси позволяет по-новому подойти к расчету процесса фонтанирования, выбора диаметра труб и режима в целом. Использование кривых распределения давления Р(х) при проектировании и анализе фонтанной эксплуатации (а также других способов эксплуатации скважин) позволяет решить ряд новых задач, недоступных при использовании прежних расчетных методов. Далее будем исходить из того, что при любых заданных условиях кривая распределения давления Р(х) в НКТ может быть определена и построена любыми возможными методами.
Заметим, что для проектирования или для анализа фонтанной эксплуатации не требуется распределение давления Р(х) вдоль всей длины НКТ. Достаточно знать забойное или башмачное давление, соответствующее данному забойному давлению, давление на устье при заданных параметрах работы скважины или наоборот, устьевое давление и соответствующее давление на забое при заданных параметрах работы скважины.
Однако поскольку простых и надежных формул (кроме формул А. П. Крылова), связывающих устьевое и забойное давления при прочих заданных условиях, нет, то приходится прибегать к численному интегрированию процесса движения ГЖС по трубе, т. е. расчету по шагам. При таком решении неизбежно получаются значения давлений в промежуточных точках между устьем и забоем, использование которых необязательно. Рассмотрим для начала простейший случай, когда задан дебит скважины Q и соответствующее этому дебиту забойное давление Рс.Отметим, что во всех случаях проектирования процесса эксплуатации скважины любым способом знание уравнения притока или индикаторной линии обязательно. В противном случае любой инженерный расчет становится невозможным, если не говорить о предположительных оценках возможных показателей работы скважины. Итак, если задан дебит, то по индикаторной линии или по уравнению притока определяется соответствующее этому дебиту давление на забое скважины.
В отношении фонтанных труб уже указывалось, что их диаметр выбирается из соображений технологических условий и возможности спуска в скважину глубинных приборов для различных исследований. Можно сказать, что для подавляющего числа случаев это будут либо трубы диаметром d = 60 мм, либо d = 73 мм. Лишь для редких случаев, когда ожидаемые отборы могут достигать нескольких сот м3/сут, можно говорить о целесообразности использования труб d = 89 мм. Во всяком случае для последующего расчета диаметром НКТ задаемся.
Зная дебит, газовый фактор, плотность нефти, воды и обводненность продукции, а также другие данные, такие как температура и ее распределение по стволу скважины, объемный коэффициент нефти (жидкости), необходимые для расчета, строим кривую распределения давления Р(х), начиная от точки с известным давлением Рс на забое скважины (рис. 8.5).
Рис. 8.5. Построение кривой распределения давления в фонтанных трубах
по методу «снизу вверх» и определение давления на устье
При этом могут возникнуть разные условия расчета, которые необходимо учитывать.
а. Башмак НКТ находится непосредственно на забое скважины, так что Рс = Рб.
б. Башмак НКТ находится выше забоя на некотором расстоянии а = Н - L, так что Рб < Рс.
в. Давление на забое или у башмака больше давления насыщения, т. е. Рс = Рб > Рнас.
г. Давление на забое меньше давления насыщения, т. е. Рс < Рнас.
Возможны также сочетание условия "а" с условиями "в" или "г", а также условия "б" с теми же "в" или "г". Предположим простейший случай: действуют условия "а" и "г". В этом случае ГЖС движется от башмака до устья, и расчет ведется по соответствующим формулам для газожидкостной смеси по шагам, начиная от башмака НКТ от точки с давлением Рс и до устья. Давление на устье получаем путем суммирования элементарных перепадов давления на n шагах:
. (8.55)
Если действуют условия "а" и "в", т.е. выделение газа начинается выше забоя в НКТ, то до точки Рнас расчет ведется по обычным формулам трубной гидравлики, с помощью которых определяются потери давления на трение.
Обозначим длину участка НКТ от забоя до точки с давлением Рнас, на котором будет двигаться однородная жидкость, через h (см. рис. 8.5). Тогда для этого участка запишется очевидное равенство давлений: