Файл: Лекция общая характеристика нефтяной залежи. Понятие о нефтяной залежи. Механизм использования пластовой энергии при добыче нефти.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.11.2023
Просмотров: 986
Скачиваний: 2
СОДЕРЖАНИЕ
1.1. Понятие о нефтяной залежи
1.2. Механизм использования пластовой энергии при добыче нефти
2.2. Приток жидкости к скважине
ЛЕКЦИЯ 3. РЕЖИМЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
4.1. Конструкция оборудования забоев скважин
4.2. Приток жидкости к перфорированной скважине
ЛЕКЦИЯ 5. ТЕХНИКА ПЕРФОРАЦИИ СКВАЖИН. ПЕСКОСТРУЙНАЯ ПЕРФОРАЦИЯ.
4.6. Передвижные компрессорные установки
4.7. Освоение нагнетательных скважин
Лекция 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.1. Назначение методов и их общая характеристика
5.2. Обработка скважин соляной кислотой
ЛЕКЦИЯ 8. ВОЗДЕЙСТВИЕ МЕТОДОМ ТЕРМОКИСЛОТНОЙ ОБРАБОТКИ.
5.4. Поинтервальная или ступенчатая СКО
5.5. Кислотные обработки терригенных коллекторов
5.6. Техника и технология кислотных обработок скважин
ЛЕКЦИЯ 9. ГИДРАВЛИЧЕСКИЙ РАЗРЫВ ПЛАСТА
5.8. Осуществление гидравлического разрыва
ЛЕКЦИЯ 10. ТЕХНИКА ИСПОЛЬЗУЕМАЯ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА
5.10. Тепловая обработка призабойной зоны скважины
ЛЕКЦИЯ 11. ТЕРМОГАЗОХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.12. Другие методы воздействия на призабойную зону скважин
Лекция 12. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН
8.1. Артезианское фонтанирование
8. 2. Фонтанирование за счет энергии газа
ЛЕКЦИЯ 13. РАСЧЕТ ФОНТАННОГО ПОДЪЕМНИКА
8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
Лекция 14. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН
9.1. Общие принципы газлифтной эксплуатации
9.2. Конструкции газлифтных подъемников
9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
ЭКСПЛУАТАЦИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН
ЛЕКЦИЯ 1. ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ. ПОНЯТИЕ О НЕФТЯНОЙ ЗАЛЕЖИ. МЕХАНИЗМ ИСПОЛЬЗОВАНИЯ ПЛАСТОВОЙ ЭНЕРГИИ ПРИ ДОБЫЧЕ НЕФТИ.
1.1. Понятие о нефтяной залежи
Нефтяная залежь представляет собой скопление жидких углеводородов в некоторой области земной коры, обусловленное причинами геологического характера. Часто нефтяная залежь имеет контакт с водяным пластом. При этом возможны два основных типа взаимного расположения. Если вода располагается ниже нефтяной залежи на всем ее протяжении, такую воду называют подошвенной. Если контакт с водой происходит в пониженных частях залежи, на ее крыльях в этом случае используется термин - контурная вода. Уровень, на котором расположена граница между нефтью и .водой, определяет положение водо-нефтяного контакта.
В ряде случаев на эксплуатацию залежи влияние может оказывать и вода, находящаяся выше или ниже нефтяной залежи, а также вода, находящаяся в пропластах самого нефтяного пласта (промежуточная вода).
При формировании нефтяной залежи может образоваться область, занятая свободным газом, так называемая газовая шапка. Размеры этой области могут быть незначительными, а могут иметь промышленное значение. В этом случае залежь называется нефтегазовой.
В процессе эксплуатации залежи на показатели разработки оказывает существенное влияние наличие контакта с водяной и газовой областями. Поэтому уже на стадии разведки месторождения важно правильно определить тип залежи и оценить соотношение размеров областей, занятых нефтью и газом.
Статистические исследования данных о составных пластовых нефтей и газов большого числа месторождений показали, что состав и другие термодинамические и физико-химические характеристики добываемой продукции являются информативными в отношении оценки типа залежи, соотношения нефти и газа в пласте, наличия аномально высоких пластовых давлений и других важных для разработки факторов. Использование этих данных позволяет на ранней стадии разведки и разработки получить дополнительную важную информацию о состоянии объекта к обычно используемой при геологических и промысловых исследованиях.
Так как состав нефти и газа относится к числу параметров, которые могут варьироваться в пределах одной и той же залежи, то при их использовании следует применять методы классификации, нс чувствительные к изменению этих параметров в пределах чтон залежи. В качестве такого метода можно рекомендовать метод ранговой классификации. Суть его заключается в следующем.
Предварительно определяют информативность каждого признака. Она может быть оценена по коэффициенту корреляции между рассматриваемым признаком, например, составом нефти и газа и изучаемым показателем, в данном случае - отношением объема нефтяной части к газовой Vн/Vг. Чем выше коэффициент корреляции, тем больше информативность признака. Для определения степени связи наиболее удобен с практической точки зрения метод ранговой корреляции. Рассмотрим его. Выявим наличие связи между Vн/Vг и содержанием C4H10 в газе по данным N месторождений. Каждому значению Vн/Vг и содержанию C4H10 присваиваем определенный ранг: наибольшему значению Vн/Vг - ранг 1, второму по величине - ранг 2 и т.д. Аналогично присваиваем ранги значениям пропана. Обозначим ранг i-го по порядку значения Vн/Vг через Xi, а соответствующего значения C4H10 - через Yi. Таким образом, имеем ряд пар (Xi, Yi). Вычисляем коэффициент Спирмена R ранговой корреляции
.
Далее подсчитываем значимость коэффициента R, для чего вычисляем
.
По соответствующим вероятностным таблицам находим критическое значение tтабл для t - распределения при N - 2 степенях свободы и уровне значимости α (обычно α принимается равным 0,05 или 0,1). Если вычисленное значение t > tтабл, то полученное t значимо и по R судят о степени связи между Vн/Vг и C4H10. Аналогично проверяем и другие факторы. Выбираем те из них, которым соответствуют наибольшие коэффициенты ранговой корреляции R.
Результаты анализа данных по ряду месторождений страны показали, что наиболее информативными признаками являются: содержание C4H10 в газе; отношение содержаний (С2
Нб)/(С3Н8); коэффициент φ = (С2Нб)·Pпл·Ф200·10-3, где (С2Н6) - содержание этана в газе, %; Pпл - пластовое давление, МПа; Ф200 - объемный выход фракций при нагреве до 200° С.
Анализ данных по месторождениям страны позволил выделить три основных типа залежи (М - сумма рангов всех трех признаков для данного месторождения),
0 < М < 5 Vн/Vг > 5 - нефтяная залежь;
6 < М < 12 0,5 < Vн/Vг < 5 - нефтегазовая залежь;
13 < М < 21 0 < Vн/Vг < 0,5 - газоконденсатная залежь.
Таким образом, по составу газа уже на стадии разведки месторождения можно диагностировать тип залежи.
Отметим, что любой метод распознавания образов, в какой бы задаче он не применялся, дает ответ с определенной вероятностью ошибки - неправильного распознавания. Несмотря на малую величину этой ошибки, т. е. высокий процент успешного распознавания образов, цена этой ошибки в отдельных случаях может быть высокой. Например, если из 100 залежей их тип будет правильно определен в 99 случаях, то ошибка составит всего 1%. В то же время, если единственная залежь, тип которой определен неверно, обладает большими запасами, то неправильная ее разработка, основанная на предполагаемом типе, может дать огромные экономические потери. Поэтому этот подход необходимо увязать и дополнить результатами геофизических исследований, анализом геологических особенностей и т. п., т. е. использовать комплекс определений, что повышает надежность диагностирования.
1.2. Механизм использования пластовой энергии при добыче нефти
Жидкость из пласта в скважину поступает под действием перепада давления между пластом и забоем скважины. Поэтому пластовое давление - основной фактор, определяющий текущее энергетическое состояние залежи. Точнее, следует говорить не об абсолютной величине этого параметра, а об его соотношении с нормальным пластовым давлением на глубине залегания данной залежи, которое равно давлению столба воды равной высоты. Различают залежи, у которых начальное пластовое давление превышает эту величину (аномально-высокое пластовое давление - АВПД) и залежи с более низким начальным давлением (аномально низкое пластовое давление - АНПД).
Аномалии начального пластового давления определяются различными причинами, в основном геологического характера. Анализ данных по большому числу нефтяных месторождений тяжелых нефтей показал, что существует корреляционная зависимость между удельным весом (содержанием тяжелых компонентов в нефти) и коэффициентом аномально высокого пластового давления, который равен отношению АВПД в залежи к нормальному пластовому давлению на соответствующей глубине. Именно, с ростом удельного веса нефти наблюдается тенденция к увеличению коэффициента аномальности. Таким образом, по составу нефти, определяемому по устьевым замерам, можно оценивать АВПД в залежи.
Другая причина проявления аномального пластового давления может быть обусловлена особенностями гидростатики разноплотных жидкостей. Пусть, например, кровля нефтяного пласта находится на глубине 1000 м, водонефтяной контакт - на глубине 2000 м, а нижняя граница водной области - на глубине 3000 м. Так как давление в пластах распределяется по гидростатическому закону в соответствии с удельным весом воды, то на глубине 3000 м пластовое давление равно примерно 30 МПа, на отметке водонефтяного контакта - 20 МПа. Если принять удельный вес нефти 800 кг/м3, то на кровле нефтяного пласта давление будет равно 20 - 8 = 12 МПа, в то время как нормальное пластовое давление на этой глубине равно 10 МПа, т. е. коэффициент аномальности равен 1,2. При наличии газовой шапки этот эффект будет существенный. Можно решать и обратную задачу - по определенному распределению давления по глубине оценивать положение водонефтяного контакта.
Различают два типа источников пластовой энергии -
естественные и искусственные. К естественным источникам относятся упругость пластовой системы, напор пластовых вод, наличие свободного газа (в виде газовой шапки), энергия растворенного газа, напор обусловленный силой тяжести. Пластовую энергию можно поддерживать искусственным способом - закачкой в пласт воды, пара или газа. В зависимости от того, какой источник пластовой энергии преобладает, формируется определенный режим разработки. Рассмотрим последовательно каждый из этих режимов.
В начальном состоянии пластовая система, под которой понимается вмещающий коллектор, нефтяная часть и контактирующий с ней водоносный бассейн, находится в сжатом состоянии, определяемом начальным пластовым давлением. Отбор нефти из залежи приводит к снижению там давления, в результате чего происходит расширение частиц породы, нефти и воды. А это, в свою очередь, уменьшает падение пластового давления. Таким образом, в процессе разработки начальная упругая энергия сжатия пластовой системы уменьшается. Метод разработки нефтяного месторождения, основанный на использовании запаса упругой энергии пластовой системы, называется разработкой на естественном режиме.
Горные породы, нефть и вода имеют сравнительно небольшие коэффициенты сжимаемости. Так, для воды β = 0,5-10-3 Мпа-1, для нефтей β = 10-3 Мпа-1, для горных пород - на порядок ниже. Поэтому даже при полном снижении давления от начального пластового до атмосферного за счет упругой энергии можно извлечь всего несколько процентов от начальных запасов месторождения (не более 3 - 5%). Однако если объем водоносного бассейна значительно превышает объем нефтяной залежи, то ситуация меняется. В этом случае при снижении давления прирост объема воды за счет расширения может стать соизмеримым с объемом нефтяной части, что приведет к увеличению вытесненной из пласта нефти.
Реализация такого режима в сильной степени зависит от темпов отбора нефти из залежи. При высоких темпах водоносный бассейн не успевает реагировать на изменение давления в нефтяной части, вследствие чего пластовое давление не будет поддерживаться за счет вторжения воды в нефтяную зону. Существенным недостатком водонапорного режима является неконтролируемое вторжение воды в нефтяную залежь. Это приводит к преждевременному обводнению добывающих скважин, неравномерному