Файл: Сборник олимпиадных задач по математике для 5 класса.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.10.2023

Просмотров: 480

Скачиваний: 7

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Решение:


Таблица с известными запретами: 

Занятие

шпажист

рукопашник

танцор

стрелок

Имя

Атос

 

 

-

-

Портос

 

-

-

-

Арамис

 

 

-

 

Д’Артаньян

 

 

 

 

Известно, что каждый из четырех мушкетеров был лучшим только в одном деле. Следовательно, в каждой строчке и каждом столбце может стоять только один «+». Взглянув на таблицу, сразу можно сказать, что танцор – Д’Артаньян, шпажист – Портос. Вносим эти данные в таблицу. Получаем: 

Занятие

шпажист

рукопашник

танцор

стрелок

Имя

Атос

-

 

-

-

Портос

+

-

-

-

Арамис

-

 

-

 

Д’Артаньян

-

-

+

-

Теперь можно сделать вывод, что стрелок – это Арамис, рукопашник – Атос. 
Ответ: Арамис – стрелок; Д’Артаньян – танцор; Портос – шпажист; Атос – рукопашник.

ГЛАВА Ш Табличный способ

Табличный способ решения логических задач также прост и нагляден, но его можно использовать только в том случае

, когда требуется установить соответствие между двумя множествами. Он более удобен, когда множества имеют по пять-шесть элементов. Рассмотрим табличный способ на примере решения задачи. 

Рассмотрим табличный способ на примере решения задачи:

Четыре футбольных команды: итальянская команда «Милан», испанская – «Реал», российская – «Зенит», английская – «Челси» встретились в групповом этапе лиги чемпионов по футболу. Их тренировали тренеры из этих же четырех стран: итальянец Антонио, испанец Родриго, русский Николай, англичанин Джон. Известно, что национальность у всех четырех тренеров не совпадала с национальностью команд. Требуется определить тренера каждой команды, если известно: 
а) Зенит не тренируется у Джона и Антонио. 
б) Милан обещал никогда не брать Джона главным тренером. 


Решение:

Решая задачу, мы заведомо знаем, что у каждой команды только один тренер. 
Чтобы решить задачу табличным способом, нужно знать следующие правила: 
1.В каждой строке и в каждом столбце таблицы может стоять только один знак соответствия (например «+»). 
2.Если в строке (или столбце) все «места», кроме одного, заняты элементарным запретом (знак несоответствия, например «-»), то на свободное место нужно поставить знак «+»; если в строке (или столбце) уже есть знак «+», то все остальные места должны быть заняты знаком «-». 
Таким образом, решение будет доведено до конца, когда мы сумеем разместить по одному плюсу в каждом ряду и колонке, обозначив таким образом, тренеров всех четырех команд. 
А теперь приступаем к решению задачи. 
Нам известно, что ни у одной из команд национальность тренера и команды не совпадали, а также, что «Зенит» не тренируется у Джона и Антонио, значит у этой команды тренер не Джон и не Антонио; а «Милан» обещал никогда не брать Джона тренером, значит у команды «Милан» тренер не Джон. Если проставить соответствующие минусы, то таблица будет выглядеть так: 

Команда

Италия – «Милан»

Испания – «Реал»

Россия – «Зенит»

Англия – «Челси»

Тренер

Итальянец 
Антонио

-

 

-

 

Испанец 
Родриго

 

-

 

 

Русский 
Николай

 

 

-

 

Англичанин 
Джон


-

 

-

-



Таким образом, становится ясно, что у «Зенита» тренер Родриго (методом исключения). Поставим «+» напротив Родриго в колонке «Зенит» и заполним свободные клетки в его ряду минусами: 

Команда

Италия – «Милан»

Испания – «Реал»

Россия – «Зенит»

Англия – «Челси»

Тренер

Итальянец 
Антонио

-

 

-

 

Испанец 
Родриго

-

-

+

-

Русский 
Николай

 

 

-

 

Англичанин 
Джон

-

 

-

-


Теперь можно сделать вывод, что тренер «Милана» – Николай. Поставим «+» напротив Николая и заполним свободные клетки в его ряду минусами. Теперь видно, что «Челси» тренирует Антонио, а «Реал» - Джон. 
Ответ:

Российская команда «Зенит» тренируется у испанца Родриго; итальянская команда «Милан» тренируется у русского Николая; английская команда «Челси» тренируется у итальянца Антонио; испанская команда «Реал» тренируется у англичанина Марка.


ГЛАВА 1V Задачи на переливание


Рассмотрим еще один тип логических задач. Это задачи на переливания, в которых с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости.

Все задачи на переливание можно представить двумя типами:

  1. «Водолей» - задачи, в которых необходимо получить некоторое количество жидкости с помощью нескольких пустых емкостей из бесконечного источника, из которого можно наливать жидкость, и в который ее можно выливать.

  2. «Переливашка» - задачи, в которых необходимо разделить жидкость в большей емкости с помощью нескольких меньших по объему емкостей, жидкость можно только переливать из одной емкости в другую;

Более систематический подход к решению задач «на переливание» заключается в использовании определённой последовательности действий.

В задачах на переливание разрешены следующие операции:

  • заполнение жидкостью одного сосуда до краев;

  • переливание жидкости в другой сосуд или выливание жидкости;

При решении таких задач необходимо учитывать следующие замечания:

  • разрешается наливать в сосуд ровно столько жидкости, сколько в нем помещается;

  • разрешается переливать всю жидкость из одного сосуда в другой, если она в него вся помещается;

  • разрешается отливать из одного сосуда в другой столько жидкости, сколько необходимо, чтобы второй сосуд стал полным.

Каждую задачу на переливание таким методом можно решать двумя способами:

I. начать переливания с большего сосуда;

II. начать переливания с меньшего сосуда.

Какой из способов более рационален (т.е. каким способом мы быстрее получим нужное количество жидкости) зависит от условий задачи. Изначально это определить нельзя.

- При решении задач первого типа («Водолей») можно использовать такой алгоритм. Запишите этот алгоритм в карточку для индивидуальной работы (Приложение 1).

Алгоритм I.

  1. Наполнить большую емкость жидкостью из бесконечного источника.

  2. Перелить из большей емкости в меньшую емкость.

  3. Вылить жидкость из меньшей емкости.

  4. Повторить действия 1-3 до тех пор, пока не будет получено обозначенное в условии задачи количество жидкости.