Файл: Курс лекций Часть i автор Старокожева Е. И. Валуйки 2008.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.10.2023

Просмотров: 403

Скачиваний: 6

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
Одним из наиболее плодотворных методов математического позна­ния действительности является метод построения математических мо­делей изучаемых реальных объектов или объектов, уже описанных в других областях знаний, с целью их глубокого изучения и решения всех возникающих в этих реальных ситуациях задач с помощью математи­ческого аппарата.

Математическая модель — это приближенное описание какого-ли­бо класса явлений, выраженное на языке математической теории (с по­мощью алгебраических функций или их систем, дифференциальных или интегральных уравнений или неравенств, системы геометриче­ских предложений или других математических объектов).

Метод математического моделирования состоит из четырех этапов:

Поиск языка и средств для перевода задачи в математическую, т.е. построение математической модели.

Изучение математической модели, ее исследование, расширение теоретических знаний учащихся.

Поиск решения математической задачи, рассмотрение различ­ных способов решения, выбор наиболее рационального пути реше­ния.

Перевод результата решения математической задачи в исходный, анализ модели в связи с накоплением данных об изучаемых явлениях и модернизация модели, а в будущем — построение новой, более совер­шенной математической модели.

Анализ математической модели позволяет проникнуть в сущ­ность изучаемых явлений. Математическая модель — мощный метод познания внешнего мира, а также прогнозирования и управления. Метод математического моделирования, сводящий исследование явлений внешнего мира к математическим задачам, занимает веду­щее место среди других методов исследования. Методом математи­ческого моделирования решаются многие задачи межпредметного характера.

С помощью метода математического моделирования раскрывает­ся двойная связь математики с реальным миром. С одной стороны, математика служит практике по изучению и освоению объектов окру­жающего нас реального мира, с другой - сама жизнь, практика спо­собствует дальнейшему развитию математики и направляет это раз­витие.
АКСИОМАТИЧЕСКИЙ МЕТОД
Математика изучает формы и отношения, отвлекаясь от их содер­жания, все математические доказательства проводятся путем логиче­ского рассуждения. Но если теорема А выводится из теоремы В, а тео­рема В из теоремы С и т.д., то получается «бесконечное возвращение назад». Аналогичная ситуация возникает при попытке давать опреде­ления новым понятиям, основываясь на ранее введенных понятиях. Чтобы избежать такого «бесконечного возвращения назад», применя­ют аксиоматический метод.


Первой дошедшей до нас попыткой такого изложения математиче­ской дисциплины была книга Евклида «Начала». Аксиоматический метод можно рассматривать как метод построения теорий, как науч­ный метод познания, как метод обучения математике.

Сущность аксиоматического метода. Метод установления ис­тинности предложений заключается в следующем: некоторые предложения принимаются за исходные (их называют аксиома­ми), истинность же других предложений, не входящих в список аксиом (называемых теоремами), устанавливается с помощью ло­гического доказательства.

Аксиоматический метод как метод обучения служит для сис­тематизации знаний учащихся, выяснения того, «что из чего следует», для установления истинности предложений специфи­ческим для математики способом, для вывода новых знаний из имеющихся.


Вопросы для самопроверки
1.Охарактеризуйте содержание понятия метода обучения в дидактике и теории и мето­дике обучения математике.

2.Что такое принцип обучения? Охарактеризуйте основные дидактические принципы в обучении математике.

3.Охарактеризуйте классификацию методов обучения математике. Какие классифи­кации методов обучения существуют?

4.Проанализируйте работу учителей математики с целью использования ими методов обучения математике. Всегда ли выбранные ими методы отвечают специфике ситуа­ции?

5.Что представляет собой проблемное обучение, в чем его суть?

Какие условия необходимы для реализации проблемного обучения? Назовите пре­имущества и недостатки проблемного обучения.

8.Охарактеризуйте программированное обучение и средства его реализации.

9.Что представляет собой математическое моделирование? Назовите основные этапы метода математического моделирования. Приведите примеры из школьного курса математики, где используется математическое моделирование.

10.В чем суть аксиоматического метода в обучении математике? Приведите примеры из школьного курса математики на применение аксиоматического метода в обучении.

Лекция 4

Тема: Формы мышления в процессе обучения математике.

Цели: ознакомить студентов с качествами научного мышления; рассмотреть пути формирования понятий, их классификацию; рассмотреть понятие теоремы, виды теорем и методы их доказательств.

Вопросы:

1.Качества научного мышления.

2.Математическое мышление.

3.Математическое понятие и его характеристики

4.Пути формирования понятий. Классификация понятий.

5.Определение понятия. Виды определений.

6.Теорема. Виды теорем. Методы доказательства теорем.

КАЧЕСТВА НАУЧНОГО МЫШЛЕНИЯ
Современное обучение характеризуется стремлением сделать развитие мышления школьников управляемым процессом, а основные приемы мышления - специальным предметом усвоения. Научное мышление характеризуют следующие качества:

гибкость — умение целесообразно варьировать способы решения познавательной проблемы, легкость перехода от одного пути решения проблемы к другому; способность выходить за границы привычного способа действия, находить новые способы решения проблемы при из­менении задаваемых условий; умение перестраивать систему усвоен­ных знаний по мере овладения новыми знаниями и накопления опыта;

оригинальность — высший уровень развития нешаблонного мышле­ния, необычность способов решения учащимися известных задач. Оригинальность мышления — следствие глубины мышления;

глубина — способность проникать в сущность каждого изучаемого факта, в его взаимосвязь с другими фактами, выявлять специфические, скрытые особенности в изучаемом материале; умение конструировать модели конкретных ситуаций и т.д.;

целесообразность — стремление осуществлять разумный выбор дей­ствий при решении какой-либо проблемы, постоянно ориентируясь на поставленную этой проблемой цель, а также стремление отыскать кратчайшие пути ее достижения;

рациональность — склонность к экономии времени и средств для ре­шения поставленной проблемы, стремление отыскать оптимально простое в данных условиях решение задачи, использовать в ходе реше­ния схемы, символику и условные обозначения;

широта — способность к формированию обобщенных способов действий, имеющих широкий диапазон переноса и применения к част­ным, нетипичным случаям; умение охватить проблему в целом, обоб­щить ее, расширить область приложения результатов, полученных в процессе ее разрешения; а также умение классифицировать и система­тизировать изучаемые математические факты и использовать анало­гию и обобщение как методы решения задач;


активность — постоянство усилий, направленных на решение неко­торой проблемы, желание обязательно решить данную проблему, изу­чить различные подходы к ее решению и др.;

критичность — умение оценить правильность выбранных путей реше­ния поставленной проблемы и получаемые при этом результаты с точки зрения их достоверности и значимости; умение найти и исправить собст­венную ошибку, проследить заново все выкладки или ход рассуждения, чтобы выявить противоречие, помогающее понять причину ошибки;

доказательность — умение терпеливо относиться к собиранию фак­тов, достаточных для вынесения какого-либо суждения; стремление к обоснованию каждого шага решения задачи; умение отличать досто­верные результаты от правдоподобных;

организованность памяти — способность к запоминанию, долговре­менному сохранению, быстрому и правильному воспроизведению учебного материала. При обучении учащихся математике следует раз­вивать как оперативную, так и долговременную память, обучать уча­щихся запоминанию наиболее существенного, общих методов и прие­мов решения задач, доказательству теорем; формировать умения систематизировать свои знания и опыт. Организованность памяти формируется у школьников особенно эффективно, если запоминание каких-либо фактов основано на их понимании.

Не нуждаются в комментариях такие качества научного мышления, как ясность, точность, лаконичность устной и письменной речи. Совокуп­ность всех указанных качеств мышления называют научным стилем мышления.


МАТЕМАТИЧЕСКОЕ МЫШЛЕНИЕ
Мышление есть активный процесс отражения объективного мира в сознании человека. Специфика предмета математики такова, что ее изучение существенно влияет на развитие мышления школьников, тесно связанное с формированием приемов мышления в процессе учебной деятельности. Эти приемы мышления (анализ, синтез, обоб­щение и др.) выступают также как специфические методы научного ис­следования, особенно ярко проявляющиеся при обучении математике как одного из базовых школьных предметов.

Основными целевыми компонентами математического образова­ния в школе являются:

усвоение учениками системы математических знаний;

овладение школьниками определенными математическими
умениями и навыками;

развитие мышления учащихся.

Мыслительная деятельность школьников выполняется с помощью мыслительных операций: сравнения, анализа и синтеза, абстракции, обобщения и конкретизации.


Сравнение — это сопоставление объектов познания с целью нахож­дения сходства (выделения общих свойств) и различия (выделения особенных свойств) между ними. Сравнение лежит в основе всех дру­гих мыслительных операций.

Анализ — это мысленное расчленение предмета познаний на части.

Синтез — мысленное соединение отдельных элементов в единое це­лое. В реальном мыслительном процессе анализ и синтез всегда выпол­няются совместно.

Абстракция — это мысленное выделение каких-либо сущест­венных свойств и признаков объектов при одновременном отвле­чении от всех других их свойств и признаков. В результате абст­ракции выделенное свойство или признак становится предметом мышления.

Обобщение рассматривают как мысленное выделение:

— общих свойств (инвариантов) в двух или нескольких объек­тах и объединение этих объектов на основе выделенной общно­сти;

— существенных свойств объекта в результате анализа их в виде об­щего понятия для целого класса объектов (научно-теоретическое об­общение).

Конкретизация также выступает в двух формах:

- как мысленный переход от общего к единичному, частному;

— как восхождение от абстрактно-общего к частному, путем выяв­ления различных свойств и признаков объекта.

Различают три вида мышления:

1. Наглядно-действенное (познание объектов совершается в про­цессе практических действий с этими объектами).

2. Наглядно-образное (мышление с помощью наглядных обра­зов).

3. Теоретическое (в форме абстрактных понятий и суждений).

С развитием математики как науки и методики преподавания мате­матики изменилось содержание, которое вкладывалось в понятие ма­тематическое мышление, существенно возросла роль проблемы разви­тия мышления в процессе обучения математике.

Математическое мышление является одним из важнейших компо­нентов процесса познавательной деятельности учащихся, без целена­правленного развития которого невозможно достичь высоких резуль­татов в овладении школьниками системой математических знаний, умений и навыков.

Математические способности — это определенная совокупность не­которых качеств творческой личности, сформированных в процессе математической деятельности.

Математическая одаренность школьников характеризуется быст­рым схватыванием математического материала; тенденцией мыслить сокращенно, свернутыми структурами, стремлением к своеобразной экономии умственных усилий; наличием ярких пространственных представлений.