ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.10.2023
Просмотров: 1058
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Числа, образующие последовательности, называются членами последовательности и обозначаются буквами с индексами, указывающими порядковый номер члена, например: а1; а2; а3; а4; …; ап; … ап – общий или п-й член последовательности.
Сама последовательность обозначается (ап).
Таким образом, последовательность считается заданной, если указан закон, по которому каждому натуральному числу п ставится в соответствие член последовательности ап. Обращаем внимание учащихся, что мы использовали два способа задания последовательности: словесный и аналитический (с помощью формулы п-го числа).
П р и м е р 3.
Последовательность двузначных чисел: 10; 11; 12; 13; …; 97; 98; 99.
В о п р о с у ч а щ и м с я: чем отличается эта последовательность от двух предыдущих? Она содержит конечное число членов и называется конечной – в отличие от предыдущих последовательностей, которые содержат бесконечно много членов и называются бесконечными.
III. Формирование умений и навыков.
Все задания, выполняемые учащимися на этом уроке, можно условно разбить на три группы:
1. Выписать первые несколько членов последовательности по ее словесному описанию.
2. Выписать первые несколько членов и вычислить некоторый (любой) член последовательности по формуле п-го члена.
3. По заданным первым членам последовательности составить формулу п-го члена последовательности.
Упражнения:
№ 560, № 562.
При выполнении первых заданий внимание следует уделить правильной записи членов последовательности, чтобы не забывали указывать индексы.
№ 563, № 564 (а, в).
При решении этих упражнений следует еще раз обратить внимание учащихся, что индексы – это натуральные числа и порядковые номера членов последовательности. Возможно устное выполнение этого задания.
№ 565 (а, в, д).
Решение у доски, с объяснениями.
№ 566.
Самостоятельное решение с устной проверкой.
№ 671.
Это задание, «обратное» предыдущим, носит развивающий характер.
IV. Итоги урока.
– Как называются числа, образующие последовательность?
– Что значит «задать последовательность»?
– Какие способы задания последовательности вы знаете?
Домашнее задание: № 561, № 564 (б, г), № 565 (б, г, е), № 572 (а).
У р о к 58 Дата:
РЕКУРРЕНТНЫЙ СПОСОБ ЗАДАНИЯ
ПОСЛЕДОВАТЕЛЬНОСТИ
Цели: рассмотреть последовательности, заданные рекуррентными формулами; формировать умения задавать последовательности различными способами; закрепить навыки использования индексных обозначений и нахождения п-го члена последовательности по его формуле.
Ход урока
I. Организационный момент.
II. Устная работа.
Назовите пропущенный член последовательности:
а) 1; 3; 5; *; 9; …
б) –10; 10; –10; 10; *; …
в) а1; …; ап – 2; *; ап; …
Последовательность задана формулой п-го члена, найти ее член с заданным индексом:
г) хп = 5п – 2, х5 = *
д) уп= п3 – п, у3 = *
е) bn = (–1)n · n, b6 = *.
Последовательность задана несколькими первыми членами, задайте формулу п-го члена:
ж) 4; 8; 12; 16; … хп = * (О т в е т: хп = 4п.)
з) 7; 7; 7; … ап = * (О т в е т: ап = 7.)
и) 1; … сп = * (О т в е т: сп = .)
к) 3; 7; 11; 15; … хп = *.
Последний пример оказывается проблемным. Ученики не могут придумать формулу, выражающую через п ее п-й член. Но можно заметить, что определенная закономерность все же есть – каждый член последовательности, начиная со второго, можно получить прибавлением к предыдущему числа 4. Можно ввести новый способ задания последовательности – рекуррентный.
III. Объяснение нового материала.
Помимо словесного и аналитического, существует еще один способ задания последовательности. Он состоит в том, что указывают ее первый член или первые несколько членов и формулу, выражающую любой член последовательности
, начиная с некоторого, через предыдущие (один или несколько). Такую формулу называют рекуррентной (от латинского слова reccuro – возвращаться), а соответствующий способ задания последовательности – рекуррентным способом.
Возвращаемся к устному последнему примеру. Последовательность можно задать рекуррентно:
х1 = 3; хп + 1 = хп + 4.
Как уже говорилось, рекуррентно последовательность можно задать через несколько предыдущих членов. Пусть (ип) – последовательность, в которой и1 = 1; и2 = 1; ип + 1 = ип + ип – 1 при п > 2. Члены этой последовательности называют числами Фибоначчи. Выписываем первые ее несколько членов:
1; 1; 2; 3; 5; 8; 13; 21; 34; 55; …
Здесь возможно привести небольшую справку из истории математики, либо предложить учащимся подготовить реферат или доклад на тему «Числа Фибоначчи и золотое сечение».
IV. Формирование умений и навыков.
При решении следующих примеров следует требовать от учащихся не только «подставлять» числовые значения в рекуррентную формулу, но и проговаривать словесную формулировку задания последовательности.
Упражнения:
1. Выпишите пять первых членов последовательности (сп), если:
а) с1 = 3, сп + 1 = сп + 4;
б) с1 = 4, сп + 1 = 2 · сп.
2. № 568, 569 (а, б) – самостоятельное решение, одновременно решение на откидных досках и последующая проверка.
3. № 672 (а, б). Это задание повышенного уровня сложности, которое заключается в том, что формула задания последовательности записана в «непривычном» виде:
у1 = –3; уп + 1 – уп = 10.
Прежде чем применять ее, нужно записать ее в таком виде, чтобы последующий член явно выражался через предыдущий:
уп + 1 = уп + 10.
Дальше ученики могут продолжить работу самостоятельно с последующей устной проверкой результатов.
V. Диктант.
Работа выполняется по вариантам (в квадратных скобках задание, относящееся ко второму варианту).
1) Является ли конечной или бесконечной последовательность делителей [кратных] числа 1200 [8]?
2) Является ли конечной или бесконечной последовательность кратных [делителей] числа 6 [2400]?
3) Последовательность задана формулой ап = 5п + 2 [bn = n2 – 3]. Запишите, чему равен ее 3-й член.
4) Запишите последний член последовательности всех трехзначных
[двухзначных] чисел.
5) Запишите рекуррентную формулу ап + 1 = ап – 4, где а1 = 5 [bn + 1 =
= , где b1 = 8]. Найдите а2 [b2].
О т в е т ы: 1) Конечной [Бесконечной].
2) Бесконечной [Конечной].
3) 17 [6].
4) 999 [99].
5) 1 [2].
V. Развивающие задания.
Задайте формулой п-го члена последовательность (bn), если известно, что:
а) b1 = 4; bn + 1 = bn+ 4;
б) b1 = 1, bn + 1 = 5bn.
Это задание направлено на формирование умения задавать последовательности различными способами, что требует от учащихся умения анализировать, сопоставлять. Для решения этого задания сперва следует записать по рекуррентной формуле несколько первых членов последовательности, проанализировать ее, «увидеть» выражение каждого члена не через предыдущий, а через порядковый номер п и записать формулу:
4; п = 1 | 8; п = 2 | 12; п = 3 | 16; п = 4 | 20; п = 5 | … | bn = 4 · n |
VII. Итоги урока.
В о п р о с ы у ч а щ и м с я:
– Какие способы задания последовательности существуют?
– В чем сущность рекуррентного способа задания последовательности?
– Можно ли одну и ту же последовательность задать различными способами? Приведите примеры.
Домашнее задание: № 569 (в; г), № 570, № 671, № 573 (а).
У р о к 59 Дата:
АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ.
ФОРМУЛА (РЕКУРРЕНТНАЯ) п-го ЧЛЕНА
АРИФМЕТИЧЕСКОЙ ПРОГРЕССИИ
Цели: ввести понятия арифметической прогрессии и разности арифметической прогрессии; вывести рекуррентную формулу п-го члена арифметической прогрессии; формировать умения нахождения разности и нескольких первых членов арифметической прогрессии по первому члену и разности, а также п-го члена по формуле.
Ход урока