Файл: Уравнения и неравенства с двумя переменными.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.10.2023

Просмотров: 1033

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


I. Организационный момент.

II. Устная работа.

1-й  б л о к. Актуализация знаний.

Назовите первые три члена последовательности:

а) an =  ;                 б) bn = 3n – 1;                в) сп = п2 + 1.

Для последовательности, заданной первым членом и рекуррентной формулой, найдите второй и третий члены:

г) x1 = 2, xп + 1 =  ;

д) у1 = 3, уп + 1 = уп2 – 5.

2-й  б л о к. Актуализация знаний и создание проблемной ситуации.

Задать последовательность с помощью формулы п-го члена или рекуррентной формулы.

       Последовательность

        Формула

а) –2; 0; 2; 4; …

х1 = –2; хп + 1 = хп+ 2

б) –5; 5; –5; 5; …

хп= (–1)п · 5

в) 2; 2,5; 3; 3,5; 4; …

х1 = 2; хп + 1 = хп+ 0,5

г) 1; 4; 9; 16; …

хпп2

д) 1;   …

х1 = 2; хп + 1 = 

е) 0; 10; 20; 30; 40; …

х1 = 0; хп + 1 = хп+ 10

ж) аа + 3; а + 6; а + 9; …

х1 = ахп + 1 = хп+ 3

После заполнения таблицы анализируем полученные результаты и замечаем, что последовательности а), в), е) и ж) – одинакового вида, а именно: задаются рекуррентным способом и каждый член, начиная со второго, получается прибавлением к предыдущему числа (2; 0,5; 10; 3).

Учащиеся «открыли» определенный вид последовательности. Следует сказать, что такие последовательности называются «арифметическая прогрессия», и попросить учащихся попробовать самостоятельно сформулировать определение такой прогрессии на основе выделенных ими характеристических свойств.


III. Объяснение нового материала.

1. Определение. Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.

(ап) – арифметическая прогрессия, если для любого п  N выполняется условие ап + 1 = ап + d, где d – некоторое число. Число d называется «разностью арифметической прогрессии», так как из определения следует, что ап + 1 – ап = d.

Далее следует привести примеры арифметических прогрессий, причем следует варьировать значение d (положительные числа; отрицательные; нуль; дробные).

П р и м е р ы  арифметических прогрессий:

1) а1 = 1, d = 1.

1; 2; 3; 4; … (последовательные натуральные числа).

2) а1 = 1, d = 2.

1; 3; 5; 6; … (последовательность положительных

                        нечетных чисел).

3) а1 = –2, d = –2.

–2; –4; –6; –8; –10; … (последовательность отрицательных

четных чисел).

4) а1 = 7, d = 0.

7; 7; 7; 7; … (постоянная последовательность).

5) а1 = 1, d = 0,3.

1; 1,3; 1,6; 1,9; 2,2; …

Обращаем внимание, что если d > 0, то арифметическая прогрессия возрастающая, если d < 0 – убывающая, если d = 0 – постоянная.

2. Итак, учащиеся знают, что для того чтобы найти любой член арифметической  прогрессии  (или  задать  ее),  достаточно  знать  ее  первый член и разность. Следует подвести их к мысли, что это очень трудоемко, например:

(ап) – арифметическая прогрессия, где а1 = 2, d = 27. Найти сотый член.

Пользуясь определением, нам нужно сделать 100 шагов. Это громоздко. Хотелось бы знать формулу для нахождения любого члена арифметической прогрессии только по первому члену, разности и порядковому номеру искомого члена.

Для вывода формулы пользуемся определением арифметической прогрессии:

а1

а2 = а1 + d

а3 = а2 + d = (а1 + d) + d = а1 + 2d

а4 = а3 + d = (а1 + 2d) + d = а1 + 3d

а5 = а4 + d = (а1 + 3d) + d = а1 + 4d

а6 = …                      = 

а1 + 5d

                 … …



– формула п-го члена

   арифметической прогрессии.

П р и м е р  1. (сп) – арифметическая прогрессия,

с1 = 0,62, d = 0,24; с50 –?

с50 = с1 + d (50 – 1) = 0,62 + 0,24 · 49 = 12,38.

Этот пример на «прямое» использование формулы п-го члена арифметической прогрессии.

П р и м е р  2. Выяснить, является ли число –122 членом арифметической прогрессии (хп):

23; 17,2; 11,4; 5,6; …

При рассмотрении этого примера пояснить, что для решения надо доказать, что существует п  N, при котором будет верна формула п-го члена:

–122 = 23 + (п – 1) · (–5,8), где

–5,8 = 17,2 – 23 – разность арифметической прогрессии.

IV. Формирование умений и навыков.

Все задания, выполняемые учащимися на этом уроке, можно разбить на 3 типа:

1) На «узнавание» арифметической прогрессии, определение ее первого члена и разности.

2) На нахождение п-го члена арифметической прогрессии по определению и по формуле.

3) На запись формулы п-го члена по первому члену и разности, решение задач на «косвенное» использование формулы п-го члена (например, нахождение п).

Упражнения:

1. Решить устно:

а) Является ли последовательность арифметической прогрессией:

–3,5; –7; –10,5; –14; –17,5; …                         (Да.)

5; 5; 5; 5; …                                                    (Да.)

2; 12; 22; 23; 32; … ?                                               (Нет.)

б) Найти члены арифметической прогрессии, обозначенные буквами:

–10; –7; с3с4с5с6

–3,4; –1,4; а3а4

12; у2; 20; у4.

в) (ап) – арифметическая прогрессия. Является ли арифметической прогрессией последовательность:

12а1; 12а2; …; 12ап; …

3а1 + 1; 3а2 + 1; …; 12ап + 1; … ?

2. № 575 (а, б), № 576 (а, в, д). Самостоятельное решение с последующей проверкой.

№ 577. Решение у доски с объяснением.

№ 579. Самостоятельное решение и одновременно на скрытых досках с проверкой.

3.
 № 584. Задание на «не прямое» применение формулы. Еще раз подчеркнуть, что с помощью этой формулы можно находить следующие величины: апа1dп.

V. Итоги урока.

В о п р о с ы   у ч а щ и м с я:

– Что называется арифметической прогрессией?

– Как задается арифметическая прогрессия?

– Назовите формулу п-го члена арифметической прогрессии.

Домашнее задание: № 575 (в, г); № 576 (б, г, е); № 586; № 599.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У р о к  60                                                                                           Дата:
СВОЙСТВО АРИФМЕТИЧЕСКОЙ ПРОГРЕССИИ

Цели: вывести и доказать характеристическое свойство арифметической прогрессии; формировать умения применять свойство арифметической прогрессии при решении задач; продолжить формирование навыков применения  определения  арифметической  прогрессии  и  формулы  п-го члена.

Ход урока

I. Организационный момент.

II. Математический диктант.

Работа выполняется по вариантам (в квадратных скобках задание, относящееся ко второму варианту).

1) У арифметической прогрессии первый член 4 [6], второй член 6 [2]. Найдите разность d.

2) У арифметической прогрессии первый член 6 [4], второй член 2 [6]. Найдите третий член.

3) Найдите десятый [восьмой] член арифметической прогрессии, если ее первый член равен 1, а разность 4 [5].

4) Является ли последовательность четных [нечетных] чисел арифметической прогрессией?

5) ап – арифметическая прогрессия. Выразите через а1 и d:

а10а2kak + 3 [a20aka2k + 1].

О т в е т ы:           1) 2 [–4];

                              2) –2 [8];

                              3) 37 [36];

                              4) Да [Да];

                              5) а10 = а1 + 9d                      [а20 = а1 + 19d];

                                  а2k = а1 + d (2k – 1)           [аk = а1 + d
 (k – 1)];

                                  ak + 3 = а1 + d (k + 2)          [a2k + 1 = а1 + 2dk].

III. Объяснение нового материала.

У с т н о е   з а д а н и е:

Дана арифметическая прогрессия (хп): 2; 5; 8; 11; 14.

Вычислить:           =                             (5.)

                                =                             (8.)

                                =                             (11.)

Замечаем интересное свойство и формируем его – «Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов».

Так как мы это предположили исходя из рассмотрения конкретной последовательности, данное утверждение следует доказать:

 Пусть (хп) – арифметическая прогрессия, тогда

хп – хп – 1 = хп + 1 – хп, то есть

2хп = хп – 1 + хп + 1,

хп = 

    

Следует обратить особое внимание учащихся, что это утверждение – свойство арифметической прогрессии. А если мы сформулируем обратное утверждение и сможем его доказать, то как будет оно называться? Это будет признак арифметической прогрессии: «Если в последовательности (хп) каждый член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов, то эта последовательность является арифметической прогрессией».

 Пусть хп =  , где п ≥ 2, тогда 2хп = хп