Файл: Уравнения и неравенства с двумя переменными.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.10.2023

Просмотров: 1043

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


 ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. ФОРМУЛА
п-го ЧЛЕНА ГЕОМЕТРИЧЕСКОЙ ПРОГРЕССИИ

Цели: ввести понятия геометрической прогрессии и знаменателя геометрической прогрессии; вывести формулу п-го члена геометрической прогрессии; формировать умения нахождения знаменателя и нескольких первых членов геометрической прогрессии по первому члену и знаменателю, а также п-го члена по формуле.

Ход урока

I. Организационный момент.

II. Анализ результатов контрольной работы.

Разбор типичных ошибок, допущенных учащимися в контрольной работе, консультация учителя.

III. Устная работа.

Подставьте в квадратик пропущенный элемент, назовите формулу для арифметической прогрессии (ап).

а) ап + 1 = а1 + o;

б) ап = а1 + d · o;

в) 2ап = o + ап + 1;

г) o = kn + b;

д)  ;

е)  .

IV. Объяснение нового материала.

1. Для мотивации изучения геометрической прогрессии целесообразно начать с решения задачи практического характера, например по расчету банковских процентов.

З а д а ч а. Родители девятиклассника положили на его имя в банк 10000 рублей на счет, по которому сумма вклада ежегодно возрастает на 9 %. Какая сумма будет на счету к его совершеннолетию через три года? Через шесть лет?

Р е ш е н и е

Начальная сумма вклада составляет 10000 р. Через год эта сумма возрастает на 9 % и составит 109 % от 10000 р. Обозначим b1 сумму на счету к концу первого года, тогда b1 = 10000 · 1,09 (р.). К концу второго года уже сумма b1 увеличится на 9 % и составит b2 = b1 · 1,09. К концу третьего года сумма составит b3 = b2 · 1,09. И так далее.

Рассмотрим последовательность b1b2b3, … b6, … bп, в ней каждый член, начиная со второго, получен умножением предыдущего члена на 1,09. Эта последовательность является примером геометрической прогрессии.


2. ОпределениеГеометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.

(bп) – геометрическая прогрессия, если для любого n  N выполняются условия bп ≠ 0 и bп + 1 = bп · q, где q – некоторое число. Число q называется знаменателем геометрической прогрессии, так как из определения следует, что   = q.

Напоминаем ученикам, что геометрическая прогрессия – частный вид последовательности, заданной рекуррентным способом.

3. Характер поведения геометрической прогрессии в зависимости от значений q следует разобрать с учащимися более детально, например по такому плану:

а) Пусть q > 1, тогда члены геометрической прогрессии таковы, что их значения имеют один и тот же знак и возрастают по модулю.

П р и м е р: 1; 3; 9; 27; 81; … (то есть b1 = 1, q = 3) или

–2; –8; –32; … (то есть b1 = –2, q = 4).

б) Если 0 < q < 1, то члены геометрической прогрессии таковы, что их значения имеют один и тот же знак и убывают по модулю.

П р и м е р:   (то есть b1 = 1, q =  ) или

 (то есть b1 = –1, q =  ).

в) Пусть q < –1, тогда члены геометрической прогрессии принимают знакочередующиеся значения, убывающие по модулю.

П р и м е р:   (то есть b1 = –8, q =  ).

д) При q = 1 все члены геометрической прогрессии одинаковы, то есть b1b1b1; …; b1; …, а при q = –1 все члены геометрической прогрессии отличаются друг от друга лишь знаками, то есть: а1; –а1а1; –а1; …

4. Вывод формулы п-го члена не вызывает затруднений у учащихся, действуем по аналогии с арифметической прогрессией. Сильному в учебе классу можно предложить провести доказательство самостоятельно.



 Пусть (bп) – геометрическая прогрессия и b1 – первый член, q – знаменатель, тогда

b2 = b1 · q

b3 = b2 · q = (b1 · q) · q = b1 · q2

b4 = b3 · q = (b1 · q2) · q = b1 · q3

b5 = b4 · q = (b1 · q3) · q = b1 · q4

… …

 – формула п-го члена геометрической прогрессии 

V. Формирование умений и навыков.

1. Вернемся к решению задачи с банковскими процентами. Мы имеем геометрическую прогрессию (bп), где b1 = 10000, q = 1,09. Сумма, накопленная вкладчиком, через три года будет равняться четвертому члену этой прогрессии, а через шесть лет – седьмому.

В ы ч и с л и м:         b4 = 10000 · (1,09)3 ≈ 12950;

                                 b7 = 10000 · (1,09)6 ≈ 16771.

О т в е т: на счету у вкладчика через три года окажется сумма, приближенно равная 12950 р.; через шесть лет – 16771 р.

2. Упражнения:

623 (а, в), № 624 (а, в, д). Самостоятельное решение с последующей проверкой.

627 (а, б), № 628 (б, в). Решение у доски с объяснениями.

VI. Итоги урока.

В о п р о с ы   у ч а щ и м с я:

– Сформулируйте определение геометрической прогрессии.

– Сформулируйте определение знаменателя геометрической прогрессии.

– Назовите формулу п-го члена геометрической прогрессии.

Домашнее задание: № 623 (б, г), № 624 (б, г, е), № 627 (в, г), № 628 (а, г),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У р о к  66                                                                              Дата:
СВОЙСТВО ГЕОМЕТРИЧЕСКОЙ ПРОГРЕССИИ

Цели: вывести и доказать характеристическое свойство геометрической прогрессии; формировать умение применять свойство геометрической прогрессии при решении задач; закрепить умения и навыки применения определения и формулы 
п-го члена геометрической прогрессии.

Ход урока

I. Организационный момент.

II. Математический диктант.

Работа выполняется по вариантам (в квадратных скобках дано задание, относящееся ко второму варианту).

1) У геометрической прогрессии первый член 8 [9], второй член 4 [3]. Найдите знаменатель q.

2) У геометрической прогрессии первый член 9 [8], второй член 3 [4]. Найдите третий член.

3) Найдите четвертый [шестой] член геометрической прогрессии, если ее первый член равен 1, а знаменатель q равен –2.

4) Является ли последовательность степеней числа 2 [3] геометрической прогрессией?

5) Является ли последовательность четных [нечетных] чисел геометрической прогрессией?

О т в е т ы:           1) 

                              2) 1 [2];

                              3) –8 [–32];

                              4) да [да];

                              5) нет [нет].

III. Объяснение нового материала.

1. Создание проблемной ситуации, востребование умения действовать «по аналогии».

Арифметическая прогрессия

(ап)

 

Геометрическая прогрессия

(bn)

an – 1 = an – d

 

bn – 1 = 

an

 

bn

an + 1 = an + d

 

bn + 1 = bn · q



an – 1 + an + 1 = an – d + an + d

an – 1 + an + 1 = 2an



 



bn – 1 · bn + 1 =   · bn · q

bn – 1 · bn + 1 = 




Здесь следует обратить внимание учащихся, что при выводе соответствующего свойства для арифметической прогрессии в равенствах у нас были слагаемые d и – d, поэтому для их сокращения требовалось почленно складывать неравенства. Для геометрической прогрессии в равенствах сомножители q и  , поэтому следует перемножить равенства.

2. Теперь можно сформулировать  с в о й с т в о  геометрической прогрессии: «Квадрат любого члена геометрической прогрессии, начиная со второго, равен произведению предыдущего и последующего ее членов».

 Доказательство приведено выше. 

Как и в случае с арифметической прогрессией, можно доказать обратную теорему, которая будет являться  п р и з н а к о м  геометрической прогрессии: «Если в последовательности чисел, отличных от нуля, квадрат каждого члена, начиная со второго, равен произведению предыдущего и последующего членов, то эта последовательность является геометрической прогрессией».

 Пусть   = bn – 1 · bn + 1, для любого п ≥ 2, так как все числа отличны от нуля, разделим обе части равенства на bn · bn – 1, получим  . Это означает, что отношение последующего члена к предыдущему – постоянное число, значит, (bn) – геометрическая прогрессия. 

3. Продолжаем действовать по аналогии. Характеристическое свойство геометрической прогрессии можно переписать и сформулировать по-другому:

 = bn – 1 · bn + 1,

, то есть модуль любого члена геометрической прогрессии, начиная со второго, является средним геометрическим предыдущего и последующего членов (для арифметической прогрессии речь шла о среднем арифметическом).

IV. Формирование умений и навыков.

В соответствии с поставленными целями на этом уроке следует выполнить следующие группы заданий: