Файл: Сборник методических пособий.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.11.2023

Просмотров: 399

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Рисунок 4 – Схема закрепления кольца с некруглой

ε3

Рисунок 17--Схема образования погрешности закрепления

Тогда

Поэтому и для технологической системы необходимо, чтобы

Рисунок 45

3.5.3 Задание к лабораторной работе

3.5.5 Методика и порядок выполнения лабораторной работы

3.5.9 Литература

1. Дальский А.М. Технологическое обеспечение надёжности высокоточных деталей машин. М. Маш. 1975. 224с.

3. Ящерицын П.И., Рыжов Э.В., Аверченков В.И. технологическая наследственность в машиностроении. М. НиТ. 1977.

4. Проников А.С. Надёжность машин. М. Маш. 1978. 591с.

5. Когаев В.П., Дроздов Ю.Н. прочность и износостойкость деталей машин. М. ВШ.1991.319с.

6. Аристов А.В. управление качеством. М. Инфра М. 2000. 238с.

3.6.2.2 Погрешности, связанные с тепловыми деформациями технологических систем

Рисунок 56 – Круглограммы формы центрового отверстия (1) и формы наружной поверхности (2) изделия в сечении центрового отверстия после шлифования в центрах

Рисунок 73

Рисунок 88 – Циклический

граф технологического

наследования

3.11.2.2 Виды и характеристики изнашиванияВ процессе трения и износа, деталей машин протекают сложные, взаимосвязанные физические, химические, и механические явления. Изучением природы механизма изнашивания, кинетики развития процесса поверхностного разрушения в различных аспектах занимаются специалисты фундаментальных наук физики, химии, механики математики материаловедения, инженеры и техники. Особенность методического подхода к анализу изнашивания заключается в тесном взаимодействии экспериментальных и теоретических методов.Рассмотрим основные виды изнашивания и условия их реализации. Абразивное изнашивание относится к механическому разрушению трущихся поверхностей, возникающему в результате режущего или царапающего действия твердых тел и частиц. В процессе абразивного изнашивания могут иметь место хрупкое разрушение, квазихрупкое при микропластической деформации и вязкое разрушение. Поверхностное разрушение может происходить при однократном и многократном пластическом деформировании. Характерным условием абразивного изнашивания является повышенная твердость изнашивающего тела―частицы минерального происхождений, шероховатости более твердой поверхности, наклепанные металлические частицы износа, твердые структурные составляющие материала, оксидные пленки. Проявляется влияние химической природы абразива и изнашиваемого материала, а также адгезионного взаимодействия, например при обработке материала абразивным инструментом. Твердые частицы имеют различные форму грани, ориентацию к изнашиваемой поверхности. На изнашивающейся поверхности остаются следы (риски, канавки, царапины) как результат микрорезания, снятия стружки, пластического деформирования. Абразивное воздействие оказывают твердые частицы в потоке жидкости, газа, воздуха при попадании на твердое тело. Возникновение трения и удара в месте контакта приводят к ударно-абразивному, ударно-гидроабразивному, ударно-усталостному, ударно-тепловому разрушению.Абразивная износостойкость зависит от прочности межатомных связей в решетке. Экспериментально установлено влияние модуля нормальной упругости, параметра θ2А (где θ – характеристическая температура по Дебаю; А – атомный вес), теплосодержания расплавленного металла, отношения абсолютной температуры плавления к атомному объему, энергии активации W, самодиффузии Q; ε E1.3 (рис. 87).Здесь ε – относительная износостойкость испытуемого матери­ала и материала, принятого за эталон, в одинаковых условиях эксперимента. Рисунок 95 – Зависимость относительной износостойкости от параметра для чистых металловХарактеристической (дебаевской) температурой называется величина , h – постоянная Планка; наибольшая частота упру­гих колебаний атомов в кристаллической решетке; k – постоянная Больцмана. При температурах, значительно меньших дебаевской θ, теплоемкость кристаллической решетки пропорциональна кубу температуры.М. М. Хрущевым получена зависимость для оценки объема износа V в зависимости от нормальной нагрузки N, пути трения S, начальной твердости металла Н, размера абразивного зерна, , где с – коэффициент, зависящий от абразивных свойств истирающей поверхности, условий взаимодействия контактирующих тел, кинематики движения и закрепления абразива, остроты ребер абразива. Обратная пропорциональность величины износа числу твердости относится к технически чистым металлам и сталям в отожженном состоянии.Износ линейно возрастает с ростом размера зерна только до некоторой его критической величины, затем при увеличении размера не изменяется. Особенно большое значение имеет размер зерна при изнашивании полимеров в связи с их низкой когезионной прочностью. В механически наклепанных металлах и сталях, если в процессе наклепа не происходит фазовых превращений, относительная износостойкость не зависит от твердости стали после наклепа, так как в процессе самого изнашивания имеет место значительный наклеп. Скорость скольжения, если не приводит к заметному нагреву контакта, мало влияет на величину износа. Рисунок 96--Зависимость относительной износостойкости и относительного износа от отношения твердости абразива твердостиметалла . Характерные области I, II, III.Относительная износостойкость зависит от соотношения твердостей абразива и металла . При в диапазоне k=0.7…1 износ незначительный, при в диапазоне k=1.3…1.7 относительная износостойкость сталей, кроме сталей Гадфилъда, не зависит от твердости абразива. В переходной области износ металла возрастает с повышением твердости абразива (рисунок 95).Абразивное изнашивание имеет место в сельскохозяйственных, горных, дорожных, строительных, транспортных, металлургических и в других машинах. Коррозионно-механическое изнашивание возникает при трении материалов, вступающих в химическое взаимодействие с окружающей средой. Могут иметь место также электрические процессы. Изнашивание в этом случае происходит под влиянием одновременно протекающих процессов поверхностного разрушения от механического и коррозионного факторов. Интенсивность коррозионно-механического изнашивания зависит от природы контактирующих материалов, их коррозионной стойкости, состава окружающей среды, от взаимодействия материалов со средой, смазочными материалами, с активными компонентами (присадками).Правильный подбор реакционноспособной присадки в смазочном материале, образующей металлоорганические соединения, содержащие серу, хлор, фосфор, йод, а также обеспечение условий химического модифицирования в различных режимах трения представляют сложную экспериментально-теоретическую задачу. Существует оптимум количества применяемом присадки, отклонение от которого приводит к повышению интенсивности изнашивания. Оксидные пленки на трущимся поверхностях ослабляют схватывание, уменьшают трение и износ. Интенсивность изнашивания (окислительного) зависит от толщины и прочности оксидной пленки. Структура, состав, защитные свойства ее зависят от температуры, контактного давления, временного фактора. Трение сопровождается активацией поверхностных слоев материалов, повышает способность к адсорбции, диффузии, химическим реакциям, к пассивации материалов. В зависимости от условий трения и со­става окружающей среды, например, на железе могут образоваться пленки . Образование и разрушение вторичных структур сопровождается деформированием и активацией поверхностных слоев.От соотношения скоростей разрушения и восстановления оксидных пленок зависят интенсивность и механизм поверхностного разрушения. При высоких скоростях разрушения оксидных слоев образуются физически чистые (ювенильные) поверхности, имеющие повышенную, склонность к схватыванию и быстрому разрушению.Существенно влияет на процесс изнашивания водород. Он выделяется из материалов трущихся тел, смазочных материалов, топлива, паров воды, пластмасс, окружающей среды и увеличивает интенсивность изнашивания. Возникает охрупчивание и образуется мелкодисперсный порошок. Большие градиенты напряжений и температур в приповерхностных слоях металла при трении способствуют повышенной концентрации водорода в зоне трения, образованию и развитию микротрещин, охрупчиванию и интенсивному изнашиванию. Работа узлов трения в агрессивных средах, в электролитах сопровождается коррозионными процессами, анодным растворением, переходом ионов атомов металла из решетки в раствор. Электрохимические процессы, развивающиеся на фактических площадях контакта, зависят от разрушения и восстановления пассивирующих пленок. Коррозионно-механические процессы могут иметь доминирующее значение при кавитационном и эрозионном разрушениях, вызванных микроударным воздействием жидкостей.Существует связь между свойствами, составом и структурой различных химических соединений, возникающих в контакте, с противоизносными, противозадирными, антифрикционными свойствами присадок, использующихся в смазочных материалах. Эффект взаимодействия зависит от адсорбционных свойств присадок, каталитического действия трущихся поверхностей, температурного интервала действия присадок.Для легких режимов трения целесообразно использовать присадки с повышенной адсорбируемостью. При ужесточении режимов трения эффективны присадки с повышенной реакционной способностью, образующие химически модифицированные слои при трении. Нагрузка, температура, свойства окружающей среды существенно влияют на химический состав, свойства поверхностных, соединений. Химическое модифицирование поверхности трения как по скорости протекания процесса, так и по глубине проникновения в приповерхностные слои материала зависит от адсорбционных свойств присадок, концентрации активных компонентов соединений на поверхности твердого тела. Интенсивность изнашивания и механизм поверхностного разрушения зависят от свойств модифицированного поверхностного слоя, а вид изнашивания может изменяться в процессе работы узла трения, особенно в нестационарных условиях. Необходимо учитывать адсорбционные и коррозионные эффекты при оценке влияния присадок на износ. Образование прочных адсорбционных слоев, экранирующее действие смазки препятствуют непосредственному контакту микронеровностей трущихся поверхностей и снижают адгезионное взаимодействие. Однако возможное снижение механических свойств поверхностных и приповерхностных слоев в результате химического модифицирования вызывает усиление коррозионно-механического изнашивания.Высокая активность вновь образованной поверхности при срезе частиц материала приводит к образованию физической адсорбции, хемосорбции, химических соединений. Работами Н. Сода и Т. Сасада показано значение времени процесса существования срезанного участка и хемосорбции кислорода с атомами металла. Среднее свободное время между образованием мостиков сварки можно оценить по формуле ,где – радиус круга мостика сварки; Н – твердость более мягкого материала;р – среднее контактное давление; – скорость скольжения. Установлена связь интенсивности изнашивания и времени для образования на поверхности металлов хемсорбированных молекул газа. Время пребывания молекулы в адсорбционном центре оценивается по формуле Я.И. Френкеля где – период колебаний адсорбированной молекулы в нормальном к поверхности направлении;Q – теплота адсорбции;R – универсальная газовая постоянная; Т – абсолютная температура поверхности.Существует зависимость противоизносных свойств с теплотой адсорбции смазочного материала. Для качественной оценки доли дефекта смазочного слоя , где – общее число адсорбционных центров, используется уравнение Кингсбюри где z – путь перемещения между адсорбированными молекулами; vs – скорость скольжения.Несущая способность граничных смазочных слоев зависит от прочности их адсорбционной связи с поверхностью твердого тела, когезионных свойств граничных слоев. Противозадирные, противоизносные, антифрикционные свойства контакта зависят от физико-химических и механических свойств модифицированных слоев. Поверхностно-активные элементы смазочного материала влияют на развитие поверхностных дислокаций, могут снижать поверхностную энергию, прочность, увеличивать контактную деформацию. Коррозионно-механическое изнашивание весьма типично для различных узлов машин, особенно для машин, аппаратов, оборудования нефтехимической, пищевой, горно-металлургической, деревообрабатывающей, микробиологической промышленности. Для уменьшения эффекта коррозии используют углеродные материалы, искусственные графиты, полимеры с наполнителями, нержавеющие стали и сплавы, материалы неметаллической группы. Адгезионное изнашивание возникает вследствие действия межповерхностных сил, молекулярного сцепления на поверхности раздела, образования адгезионных связей между касающимися поверхностями. Под адгезией понимают слипание соприкасающихся поверхностей разнородных твердых или жидких тел. Адгезионные взаимодействия вызывают подповерхностное разрушение трущихся материалов, появление заедания, возникновение "холодной сварки", повышенные значения интенсивности изнашивания и сил трения. Сила адгезионного взаимодействия зависит от степени очистки поверхностей от адсорбированных слоев, загрязнений, наличия смазочных веществ. Проблема адгезионного взаимодействия является центральной в науке о трении и износе твердых тел—металлов, полимеров, керамики, композитов, полупроводников.На площадках фактического контакта трущихся поверхностей под воздействием нормальных и тангенциальных усилий, температур, деформационных процессов происходит разрушение всех экранирующих слоев (смазки, загрязнений, адсорбированных веществ, оксидов), возникает контакт атомарно-чистых поверхностей. Механизм адгезии связан с особенностями электронного строения контактирующих тел, концентрации валентных электронов, плотности свободных электронов на поверхности раздела.Энергия атомных связей, распределение атомов в поверхностных слоях, структура поверхности, дефекты кристаллической решетки определяют условия адгезионного взаимодействия. Эксперименты показали неоднозначную корреляцию адгезии с твердостью, модулем упругости, температурой плавления, кристаллической структурой, поверхностной энергией, скрытой теплотой плавления, размерами атомов.Отсутствие удовлетворительной теории адгезии не позволяет в настоящее время расчетным путем прогнозировать силу адгезионного взаимодействия при трении.Степень адгезионного взаимодействия в некоторых случаях зависит от поверхностной энергии твердых тел, т. е. работы, необходимой для создания новых поверхностей. Для приближенной оценки поверхностной энергии используется уравнение , где Е – модуль упругости; у0 — расстояние между взаимодействующими плоскостями спайности; а0— радиус действия межатомных сил притяжения.Энергию адгезии Еа можно представить как половину энергии, необходимой для удаления друг от друга контактирующих двух твердых тел: , где – поверхностная энергия тел 1,2; Ек– энергия контакта, вызванная существованием поверхности раздела. Делаются попытки осуществления качественной оценки энергии поверхности, контакта и адгезии на основе численного решения интегрального уравнения Шредингера.Сила адгезионного взаимодействия зависит от суммарной площади фактического контакта, на которой действуют поверхностные силы, от влияния упругих напряжений и деформаций на разрушение адгезионных связей, при разделении контакта, от упрутопластических контактных деформаций. Адгезия меньше у металлов с гексагональной кристаллической структурой и с плотной упаковкой атомов по сравнению с металлами с объемно центрированной и гранецентрированной кристаллическими решетками. Легирующие элементы (углерод, сера) уменьшают адгезионный износ.В композиционных материалах изнашивание зависит от ориентации волокон в матрице. Меньший адгезионный износ возникает при направлении волокон, перпендикулярном направлению скольжения, и при ориентации волокон торцами к трущимся поверхностям.Деформация и износ трущихся приповерхностных слоев способствуют разрушению промежуточных защитных слоев. Сдвиговая прочность в месте контакта является существенно переменной величиной, зависящей от состояния промежуточных пленок, способности к упрочнению, хрупкости и пластичности материалов. При реализации сдвига непосредственно на поверхности раздела адгезионный износ незначительный. Если адгезионное соединение в контакте прочнее менее прочного материала, то происходит когезионное разрушение материала. Под когезией понимается притяжение между частицами одного и того же твердого тела (или жидкости). В зависимости от силы адгезионного взаимодействия интенсивность изнашивания может изменяться на 4...8 порядков и более, в то же время коэффициент трения колеблется в пределах одного порядка.Согласно модели Д. Арчарда, объемный износ V на пути трения скольжения 5 при адгезионном взаимодействии зависит от фактической площади контакта Аг. Площадь контакта двух микронеровностей как единичного события представляет собой круг радиуса а. На пути скольжения образуется полусферическая частица радиуса а с объемом или где Аr – площадь фактического контакта двух микронеровностей. Износ V, приходящийся на единицу пути трения скольжения, S, можно выразить формулой , где – коэффициент, характеризующий вероятность образования частицы износа в данном событии. Фактическая площадь контакта Аr в зависимости от вида деформации является функцией нормальной нагрузки N. Для упругой деформации ; для пластической – – , где Е – модуль упругости; – предел текучести.Для приближенной оценки объемного адгезионного износа V используется уравнение Арчарда: ,где k – коэффициент адгезионного износа; Н – твердость более мягкого материала. Обычно пластическая деформация шероховатостей имеет место при начальном касании тел. Последующие условия контактирования приводят к упругопластическим и к упругим деформациям. Значение износа зависит не только от нагрузки, твердости и пути трения, но и от топографии поверхностей, действующих температур, физико-механических свойств Приповерхностных слоев, смазочных материалов, окружающей среды и других факторов.Для приближенной оценки объема адгезионного износа V в условиях граничной смазки можно воспользоваться формулой Роу: где – коэффициент износа; f – коэффициент трения; H – твердость более мягкого материала; Vs – скорость скольжения; da – диаметр (площади влияния) адсорбированной молекулы; t0 – период колебания адсорбированной молекулы; Q – теплота адсорбции; R – газовая постоянная; Т – абсолютная темпера­тура в контакте поверхностей.Адгезионное изнашивание часто возникает при недостаточ­ном количестве и при отсутствии смазочного материала, в случаях разрушения загрязнений, адсорбированных пленок, оксидов. В практике встречается во многих узлах трения—опорах скольжениями качения, в зубчатых передачах, муфтах, направляющих, кулачковых механизмах, при механической обработке материалов. Особенно адгезионный износ опасен для космической техники, вакуумного оборудования, механизмов атомных реакторов и других высоконагруженных узлов, функционирующих в газовых и жидких агрессивных средах.Усталостное изнашивание возникает в результате повторного деформирования микрообъемов материала, вызывающего возникновение трещин и отделение частиц материала. Циклически изменяющиеся контактные напряжения вызывают поверхностное разрушение в виде ямок выкрашивания (питтинг) трещин, осповидного изнашивания, отслаивания. Образующиеся раковинки с диаметром от сотых долей миллиметра до нескольких иллиметров увеличиваются в процессе работы узла трения, возникает шелушение поверхности. Количественная оценка контактной усталости выражается в числе циклов нагружения или в часах работы до возникновения усталостных разрушений поверхностей. Появление усталостного изнашивания—выкрашивания—приводит к усилению вибрационно-акустической ак­тивности механизмов, повышению уровня шума, увеличению концентрации нагрузки, контактных напряжений, уменьшению размера площади несущей поверхности трущихся поверхностей, возникновению интенсивного износа и заедания. Условия возникновения и кинетика развития усталостного изнашивания зависят от напряженного и деформированного состояния поверхностных и приповерхностных слоев материала, физико-механических свойств материала, физико-химических свойств смазочных материалов и окружающей среды, толщины смазочного слоя, кинематики контакта, формы и размеров соприкасающихся деталей. Упругое контактное макродеформирозание материалов сопровождается появлением микропластических деформаций в микрообъемах.Возникновению микротрещин при циклических контактных воздействиях способствует влияние концентраторов напряжений. К поверхностным концентраторам напряжений относятся дефекты в виде царапин, вмятин, рисок, прижогов и др. Подповерхностные концентраторы напряжений—неметаллические включения, микропоры, раковины, карбиды и др. Большое влияние оказывают значения максимальных касательных напряжений. Первичная трещина чаще возникает на поверхности контакта, но может зарождаться и в приповерхностных слоях материала.Скорость развития усталостного изнашивания зависит от многих факторов—механических свойств материала, физико-механических свойств поверхности, качества обработки поверхности, остаточных напряжений в приповерхностных и поверхностных слоях материалов, от концентрации напряжений, степени приработки, частоты изменения напряжений, уровня температуры, химической активности окружающей среды и др. Увеличение коэффициента трения скольжения способствует возникновению выкрашивания. С ростом толщины смазочного слоя уменьшаются число взаимодействующих микронеровностей, продолжительность и величина деформирования, предотвращается металлический контакт. Условиями появления выкрашивания, связанными с пластическими деформациями, можно объяснить положительное влияние повышенных значений пределов упругости, текучести, вязкости материала, твердости несущей области материала, а также ведущее значение дислокационных процессов — образование пустот, слияние дислокаций вдоль плоскостей скольжения или спайности.В начальный период работы сопряжений может возникнуть ограниченное выкрашивание, зависящее от концентрации нагрузки на отдельных участках или неровностях. В результате последующей приработки распределение нагрузки становится более равномерным и выкрашивание прекращается.Фрикционно-усталостная модель изнашивания была развита И. В. Крагельским, в ней учитываются процессы на уровне влияния микрогеометрии (шероховатостей) поверхностей. При относительном скольжении трущихся тел разрушение происходит в результате многократного деформирования истираемого материала жесткими микронеровностями контотела. Уравнение И. В. Крагельского для фрикционной усталости где h/R – относительная глубина внедрения (h – глубина внедрения единичной неровности; R – радиус неровности); ра и рr – соответственно номинальное и фактическое давления;k1 – коэффициент, зависящий от расположения неровностей по высоте; α* – отношение номинальной площади к площади трения; n – число циклов, которое выдерживает деформированный объем до разрушения.При скольжении тел процесс накопления повреждений имеетопределенную стадийность. Вначале происходит накоплениеупругих искажений решетки и увеличивается плотность дислокаций. После достижения критической плотности дислокаций возникают субмикроскопические трещины. Вместе с необратимыми искажениями кристаллической решетки нарушаются межатомные связи и разрушаются отдельные микрообъемы. Теория износа отслаиванием, разработанная Н. Су, исходит из следующих концепций. Тангенциальное усилие передается между поверхностями адгезнонным и пропахивающим действием. Под поверхностная пластическая деформация накапливается при многократных проходах неровностей, при этом образуются трещины и пустоты в под поверхностных слоях металла, происходит их рост и слияние. Процесс отслаивания рассматривается как кумулятивный. Под действием каждой проходящей неровности происходит некоторый сдвиг материала. Лепестки износа возникают после прохождения достаточно большого числа неровностей.В некоторых условиях эксплуатации развиваются глубинные усталостные трещины, вызывающие отслаивание. Трещины возникают под упрочненным поверхностным слоем и при этом отделяются крупные частицы разрушенного материала, уменьшается площадь контактирующей поверхности, возникают концентраторы напряжения. Интенсивность дальнейшего изнашивания в связи с этим резко увеличивается. В этих случаях несущая способность контакта увеличивается с ростом упрочненного слоя и твердости материала, лежащего пол этим слоем.Усталостное разрушение поверхностных слоев материалов в виде выкрашивания возникает в хорошо смазывающихся механизмах, трущиеся сопряжения которых работают в режимах кинематического качения, скольжения, качения со скольжением. Наиболее подвержены контактному разрушению в виде выкрашивания зубчатые передачи, подшипники качения и скольжения, катки, кулачковые механизмы, фрикционные передачи и др. Следует отметить, что усталостные процессы разрушения обычно сопутствуют различным видам изнашивания, так как переменные во времени напряжения имеют место при различных видах трения и приводят к усталостным разрушениям.Изнашивание при фреттинг-коррозии возникает при малых колебательных, циклических, возвратно-поступательных перемещениях с малыми амплитудами. Необходимым условием возникновения фреттинг-коррозии является наличие проскальзывания между касающимися поверхностями. Фреттинг-коррозия возникает в заклепочных болтовых, шлицевых, шпоночных, штифтовых соединениях, прессовых посадках деталей, стальных канатах, шарнирах, соединениях муфт, рессорах, клапанах регуяяторах электрических контактов, кулачковых механизмах, элементах ядерных реакторов; несущих системах вертолетов и самолетов, деталях газотурбинных двигателей. Активизирует этот, процесс наличие вибраций, переменных во времени крутящих и изгибающих моментов. Повреждения концентрируются на небольших участках и напоминают точечную коррозию. Повышается величина шероховатостей, образуются натиры, налипания, каверны, микротрещины, при этом обычно снижается усталостная: прочность деталей. Порошкообразные продукты изнашивания представляют собой обычно оксиды, которые, если могут иметь выход из области контакта, приводят к ослаблению натяга, плотности соединения, увеличению вибраций, попадают в другие трущиеся сопряжения и обладают абразивным действием. Объем продуктов изнашивания при фреттинг-коррозии обычно повышает объем изношенного металла перешедшего в оксидное состояние. Если частицы износа не имеют выхода из зоны контакта, то в системе возникает повышенное расклинивающее действие. В результате возможны возникновение заедания, заклинивание механизма, аварийная ситуация, например в предохранительных клапанах, регуляторах, переключателях и реле.В зависимости от условий нагружения, кинематики контакта, свойств материала, коррозионной активности окружающей среды может изменяться доминирующий механизм поверхностного разрушения. Вначале разрушаются оксидные пленки, Отслаиваются тонкие чешуйки металла, усиливается адгезионное взаимодействие поверхностей. Происходит адгезионно-усталостное изнашивание при одновременном коррозионном воздействии среды. Стадийность фреттинг-коррозии включает упрочнение микровыступов взаимодействующих поверхностей в местах фактического контакта. Разрушение оксидных слоев, межатомное взаимодействие физически чистых поверхностей приводят к микросхватыванию. Продукты износа образуются вследствие разрушения узлов схватывания и усталостного повреждения микронеровностей. Одновременно в подповерхностных слоях накапливаются усталостные повреждения, усиливаются коррозионные процессы формируется коррозионно-активная среда. В заключительной стадии фреттинг-коррозии преобладают коррозионно-усталостные разрушения, приводящие к ускоренному изнашиванию. Интенсивность разрушения поверхностей зависит от склонности к разупрочнению поверхностных слоев, к их разрыхлению вследствие электрохимического, коррозионно-усталостного, знакопеременного, циклического деформирования. Изнашивание при фреттинг-коррозии зависит от одновременно протекающих процессов микросхватывания, усталостного, коррозионнр-механического, абразивного воздействия.С ростом удельной контактной нагрузки может изменяться характер повреждения материала от адрстно-коррозионного до возникновения схватывания, взаимного переноса металла. С ростом числа циклов нагружения, объем удаленного материала увеличивается. Повышение амплитуды проскальзывания вызывает усиленное изнашивание, особенно в области амплитуд, превышающих 0,10...0,15мм. При малых амплитудах частицы износа (оксиды) могут играть роль тел качения и предохранять от повышенного-изнашивания, при больших амплитудах перемещения возможно возникновение у очагов схватывания Частота колебаний изменяет скорость проскальзывания в контакте, период цикла, контактную температуру. Большее разрушение поверхности и характерно для низких частот колебаний. В обычной атмосфере с, повышением частоты колебаний, износ сначала убывает, затем остается постоянным. При низких частотах увеличивается время действия химических процессов. Коррозионная активность окружающей среды существенно влияет на интенсивность изнашивания. Например износ в воздушной среде и в среде кислорода выше, чем в вакууме, азоте, гелии. Разрушение открытых поверхностей идет более интенсивно в зимнее время. По мере снижения отрицательных температур изнашивание усиливается. Повышение контактных удельных нагрузок, амплитуд перемещений, скоростей скольжения уменьшение теплопроводности материалов увеличивает местные контактные температуры без заметного общего нагрева узла трения. Повышенное значение температур в местах фактического контакта шероховатостей, механическая активация материалов приводят к процессу схватывания. Однако влияние температуры вследствие изменения скорости образования оксидных пленок на износ неоднозначно.Расчетные зависимости для определения износа в условиях феттинг-коррозии имеют весьма приближенный, оценочный характер.Для уменьшения износа используют смазочные материалы, в которых кислород имеет низкую растворимость, с пониженным коэффициентом диффузии, с высокой противоокислительной стабильностью, с повышенными адгезионными, адсорбционными свойствами к контактирующим поверхностям. Нанесение неметаллических покрытий, использование прокладок, коррозионно-стойких материалов уменьшает интенсивность изнашивания. Правильный выбор материалов деталей должен сочетаться с учетом уровня контактных нагружений, амплитуд перемещений, с видом смазочного материала и характером окружающей среды. Ресурс работы сопряжения при фреттинг-коррозии зависит также от сопротивляемости материала абразивному, усталостному, коррозионному разрушению, от его ударно-вязкостных свойств. Существенное влияние имеют структура материала и склонность к схватыванию. Механизм возникновения - и кинетика развития изнашивания поверхностей в условиях фреттинг-коррозии являются наиболее сложными по своей природе процессами.Эрозионное изнашивание происходит в результате воздействия на поверхность потока жидкости, газа, твердых частиц. С удалением поверхностных локальных микрообъемов при повторных воздействия частиц возникают неровности и огрубление поверхности Интенсивность эрозионного разрушения зависит от прочности когезионных связей в материале энергия выделяющаяся в момент соударения частиц с поверхностью, сможет, вызвать частичное оплавление места контакта. Эрозия при воздействии воды происходит, вследствие, трения потока поверхность и от ударного воздействия частиц потока при этом сможет иметь место, процесс электрохимической коррозии, поэтому во многих случаях эрозионное изнашивание сопровождается коррозионно-механическими разрушениями. Интенсивность эрозионного изнашивания зависит от скорости потока, угла атаки с изнашивающейся поверхностью, механических свойств и концентрации воздействующих частиц, агрессивности среды – носителя, физико-механических и химических свойств поверхностных и приповерхностных слоев материала. Отмечают эрозионное разрушение при гидроабразивном и газоабразивном воздействии среды. Гидроабразивное изнашивание имеет место в различных деталях гидромашин, патрубков, землесосов, турбобуров и др. Воздействующими факторами являются абразивные частицы и поток жидкости, несущий твердые частицы. Механическое воздействие твердых частиц может сочетаться с коррозионным и кавитационным разрушением. При возникновении ядер кавитации в потоке жидкости вследствие существования микрообъемов воздуха, пузырьков возможна реализация двух механизмов разрушения – гидроабразивного и кавитационного. Оценивается зависимость кавитационного износа от скорости потока жидкости показателем степени при скорости 6...14, абразивного износа – около 2. Во времени абразивный износ развивается приблизительно линейно, кавитационный – в существенно нелинейной зависимости. Инкубационный период, характерный для кавитационного разрушения при абразивном изнашивании, отсутствует. На гидроабразивный износ влияют также соотношение значений твердости материала и абразива, величина угла атаки.Газоабразивное изнашивание происходит в результате воздействия твердых частиц, увлекаемых газовым потоком. Газоабразивное изнашивание типично для газовых турбин, доменного производства, газодобывающих агрегатов, оборудования, устройств пневмотранспорта и др. Главными факторами влияния в этом случае являются скорость потока абразивных частиц угол атаки, свойства и концентрация абразива, физико-химические характеристики среды- Зависимость газоабразивного износа материала от относительной твердости абразива (абразивных зерен) имеет 5-образный вид: нижняя часть относится к соотношению твердости абразива к твердости материала Hм, т.е. верхняя зона начинается при Величина износа являётся функцией подводимой энергий твердыми частицами к местам контакта с поверхностью твердого тела и имеет абразивно усталостную природу. Предельное накопление энергии в материале до его разрушения зависит от физико-механических свойств материала, структурного и фазового состояния, сопротивления материала возникновению пластической деформации и хрупкому разрушению. Необходимо учитывать при подборе материалов возможное коррозионное воздействие газовой среды и электрохимические процессы при взаимодействии среды и частиц. Повышение износостойкости за счет увеличения твердости может быть получено путем легирования, химико-термической и физической (лазерной, плазменной и др.) обработками поверхности, но не путем повышения твердости материала наклепыванием.Эрозионный вид изнашивания может возникать также в результате воздействия разрядов при прохождении электрического тока.Кавитационное изнашивание возникает при относительном движении твердого тела и жидкости в условиях кавитации. Кавитационный износ типичен для деталей машин, работающих в жидких средах.Процесс образования гидродинамической кавитации связан с возникновением каверн-кавитационных пузырьков. Основные действующие факторы при кавитации имеют, различную природу значительные локальные механические силы, химические тепловые, электрические и другие процессы. Механизм и кинетика кавитационного изнашивания стадийный, включает процесс зарождения и роста кавитационных каверн, их захлопывание (схлопывание), разрушительное воздействие на поверхность. Для образования каверн в жидкости необходимо падение давления в ней до давления насыщенных паров. Ядра кавитации в области разрежения жидкости превращаются в кавитационные пузырьки каверны. В момент достижения предельного размера кавитационные пузырьки (каверны) начинают захлопываться, вследствие чего поверхность твердого тела в зоне кавитации подает механическое повреждение. Возникают; ударные волны на поверхностях деталей. Кавитационный износ: (кавитационная эрозия) металлических тел имеет вид, выдавленных кратеров, периодически образующихся в процессе работы деталей.Частота образования, каверн при условии сохранения их изнашивающего воздействия характеризуется критерием Струхаля , где Н – число, каверн, возникающих в секунду; d – характерный размер тела; v – скорость потока жидкости.Деформирование и диспергирование, изнашивающегося материала возникают при захлопывании каверн в результате ударного воздействия на стенку. В момент удара сжатие жидкости и ее поведение подобно твердому телу, отвердение жидкости протекает в миллионные доли секунды, затем следует период растекания жидкости на твердой стенке. Кавитационное изнашивание зависит от условий зарождения и увеличения кавитационных каверн, процесса захлопывания каверн и интенсивности кавитационных ударов, от свойств материалов и покрытий, от кинематических и динамических параметров потока. Местные неровности, волнистости, шероховатости, выступы способствуют возникновению процесса кавитации и изнашиванию. Значительное влияние на кавитационный износ оказывают скорость потока жидкости и вибрация контактирующих с жидкостью деталей (вибрационная кавитация), вменением физико-механических свойств жидкости, вязкости, пряности тела, поверхностного натяжения, температуры можно повлиять на интенсивность кавитационного изнашивания. Сверхразвитая кавитация (суперкавитация) перестает изнашивать поверхности. Кавитационному изнашиванию подвержены различные детали гидромашин, рабочие колеса насосов, гребных винтов, лопасти гидротурбин. В описании механизма процесса кавитационного изнашивания весьма перспективны кумулятивно-релаксационные модели разрушения твердых тел.Изнашивание при заедании является наиболее опасным разрушением трущихся поверхностей, возникающим в результате схватывания, глубинного вырывания материала, переноса материала с одной поверхности трения на другую, разрушающего воздействия образовавшихся неровностей. Заедание появляется в виде глубоких борозд, выровов, наростов, рисок, оплавлений. Изнашивание при заедании может иметь лавинный, катастрофический характер и приводить к полному выходу узла трения из строя. Заедание имеет место в тяжелонагруженных зубчатых передачах, кулачковых механизмах, шарнирных соединениях, подшипниковых опорах, в цилиндропоршневых парах, золотниковых устройствах, в направляющих станков, в стационарных контактах при наличии вибраций. Условия возникновения и кинетика развития изнашивания при заедании зависят от напряженно-деформированного состояния контакта, кинематики движения (качение, скольжение, качение со скольжением), температурного состояния, физико-механических и химических свойств контактирующих тел, характеристик смазочных материалов, окружающей среды, количества и качества присадок к основному маслу, способа смазки, шероховатости контактирующих поверхностей, других факторов. Обязательным условием возникновения заедания является разрушение промежуточных и взаимодействие физически чистых (ювенильных) контактирующих поверхностей. Разрушение защитных смазочных слоев может наступить вследствие пластической деформации, износа шероховатостей, находящихся даже в «холодном» состоянии, или вследствие потери смазывающих свойств (деградации) смазочного материала при повышенных фактических температурах в зонах фактического контакта тел. Заедание возможно в результате срабатывания смазочного материала и при недостаточном его дополнительном поступлении к местам трения.На процесс "холодного" заедания, встречающийся в тихоходных механизмах и стационарных контактах, влияют степень дискретности контакта, износостойкость защитных слоев пластичность контакта, склонность к образованию адгезионных связей. Возникновению "горячего" заедания способствуют факторы, приводящие к росту контактной температуры. Заеданию предшествуют процесс разрушения оксидных слоев и адсорбированных пленок, механотермическая активация поверхностных слоев материала.В случае невысоких контактных температур, деформационного упрочнения узлов схватывания и повышенной их прочности (по сравнению с прочностью исходного материала) разрушение поверхности происходит в менее прочном материале. Возникают задир и повышенный износ. Увеличение температуры контактирующих поверхностей приводит к размягчению материала, частичному удалению поверхностных пленок росту фактической площади контакта, к повышению склонности поверхностей к схватыванию. Принципиальное значение при этом имеет скорость процесса разрушения и образования защитных поверхностных слоев. Сближение атомов контактирующих материалов на расстояние межатомных взаимодействий, электронный обмен приводят к образованию узлов схватывания, возникновению прочных химических связей. Механические свойства узлов схватывания (мостиков сварки) зависят от процессов рекристаллизации, диффузии, релаксации напряжений. Рекристаллизация приводит к образованию общих зерен в местах контакта, диффузионные процессы сопровождают упрочнение, разупрочнение, охрупчивание материалов. Пластическая деформация, предшествующая заеданию, активирует поверхности трения при этом возникают неравновесное электронное состояние, активированное состояние атомов поверхностей. Указанные факторы способствуют образованию узлов схватывания и развитию изнашивания в условиях заедания. В момент возникновения заедания, как правило, резко увеличивается коэффициент трения скольжения (для тихоходных и среднескоростных трущихся тел), растет температура, в механизмах развиваются динамические процессы, повышается виброакустическая активность. В момент возникновения заедания, как правило, резко увеличивается коэффициент трения скольжения (для тихоходных и среднескоростных трущихся тел), растет температура, в механизмах развиваются динамические процессы, повышается виброакустическая активность. В случае высоких скоростей, мощных контактных тепловых источников возникают интенсивная пластическая деформация поверхностных слоев и их оплавление. Катастрофически быстрое изнашивание трущихся тел протекает без заметного увеличения или при уменьшенном коэффициенте трения скольжения, который соответствует контактно-гидродинамическому режиму смазки. Метод прогнозирования условий возникновения заедания на этапе проектирования узлов трения основываются на следующих критериях.Критерий Г. Блока основывается на гипотезе о существовании критической температуры разрушения смазочного слоя, характерной для каждой комбинации материалов и масла. Температура в контакте рассчитывается как сумма объемной температуры тел перед входом в контакт и мгновенного повышения температуры в контакте, возникающий в процессе трения тел,―температурной вспышки . Температура определяется экспериментально или рассчитывается на основе рассмотрения теплового баланса узла трения. Температурную вспышку для катящихся со скольжением цилиндрических тел находят по формуле ,где – коэффициент трения скольжения; – погонная (удельная) нагрузка; – скорости качения поверхностей; – коэффициенты теплопроводности материалов поверхностей; – плотности материалов поверхностей; с1, с2 – удельные теплоемкости материалов поверхностей;b – полуширина площадки контакта, рассчитанной по Герцу. Условие отсутствия возникновения, заедания по Г. Блоку, где – суммарная критическая температура, при которой происходит заедание поверхностей. На основе анализа экспериментально-расчетных данных для различных условий трения, материалов, смазочных сред

равно как и его величина, при прочих равных условиях увязывается с характером конструкции. В этом убеждает серия экспериментов, выполненных с датчиками сопротивления, наклеенными на стенки отверстий. Отклонения формы основных отверстий проявляются также в зависимости от того, как располагается их ось при обработке резанием. Дано сравнение отклонений формы отверстия из-за закреплен одного из корпусов четырьмя прихватами силой 170кгс каждый, но при горизонтальном и вертикальном расположениях оси. Длина образующей составляет 175мм, сечения расположены равномерно. Очевидно, что разница упругих перемещений объясняется конструктивными особенностями корпуса.


Горизонтальное расположение оси

0,75

0,02

0,57

0,53

0,4

Вертикальное расположение оси

0,14

0,03

0,2

0,14

0,05


Переменная жесткость технологической системы при растачивании прерывистых отверстий приводит к местным отклонениям формы и изменению физико-механических характеристик материала обрабатываемой детали на входе и выходе режущего инструмента, работающего с ударом. Эта картина характерна для таких конструктивных форм корпусов, когда оси отверстий пересекаются или перекрещиваются и одно отверстие входит в другое. Установка соответствующих заглушек, с помощью которых ликвидируется прерывистость отверстий, может вызвать существенные отклонения формы, так как заглушки ставят с натягом. Установка заглушек в корпус шпиндельной бабки станка мод. 2А450 иногда вызывает местные отклонения, превышающие допуск на прямолинейность отверстия. Как правило, они достигают величин, составляющих 50 – 60% допустимого отклонения формы. Указанные отклонения, связанные с особенностями конструктивных форм, возникают на начальных операциях и наследуются в дальнейшем. На финишной операции хонингованием такие отклонения не устраняются.

3 Детали типа плит. Представителями высокоточных деталей данного типа являются столы прецизионных металлорежущих станков. Направляющие элементы столов и салазок характеризуются прежде всего прямолинейностью, которая определяется с помощью опти­ческих методов. При механической обработке плоских поверхностей также проявляется технологическая наследственность конструктивных элементов. Режущий инструмент, перемещаясь относительно заготовки, воспроизводит на ней поверхность, форма которой определяется переменной жесткостью конструкции по аналогии с рисунка 76. Приливы, ребра жесткости, карманы и другие конструктивные Элементы приводят к тому, что при постоянных по величине силах резания упругие перемещения обрабатываемой заготовки в каждой точке будут различными. Задача при этом сводится к тому, чтобы возникающие неплоскостность и непрямолинейность не выходили за допустимые пределы. Аналогичные явления возникают, естественно, на сопряженных деталях, по которым перемещаются плиты, например на станинах станков. В связи с этим представляет интерес обратная задача. Установлено, что при обработке длинные направляющие станин получают отклонения от прямолинейности, характеризуемые периодическими кривыми — в первом приближении косинусоидами. Перемещаемый же по ним стол на длине своих направляющих имеет существенно меньшую непрямолинейность. Важно определить, каким образом форма направляющих станины влияет на траекторию перемещения стола. Отклонение траектории от прямой линии зависит от жесткости столов.


Рассмотрим случай, когда направляющие стола прямолинейны и он представляет собой жесткое тело. Предварительный анализ форм направляющих станин показывает, что на всей их длине имеются одна-две волны, шаг которых соизмерим с длиной перемещающегося стола.


Рисунок 77 – Траектория перемещения центра “зеркала” жесткого стола
Форму направляющих можно представить как


где m– амплитуда косинусоиды; L – длина направляющих станины.

При движении стол проходит ряд фаз, что позволяет определить уравнение траектории любой его точки. Здесь приходится решать трансцендентные уравнения с использованием вычислительных машин. Для станка мод. 2А450 длина стола составляет 1250мм, длина направляющих станины—2500мм, высота стола—100мм, т=0,002мм. Траектория центра "зеркала" стола—его вертикальные перемещения η—для представленных данных показана на рисунке 77. Из графика следует, что за время перемещения стола из одного конца в другой центр «зеркала» совершает два вертикальных колебания. Несмотря на то, что двойная амплитуда направляющих станины равна 4мкм, вертикальное его перемещение для указанных соотношений размеров в зоне нормальной работы стола не превышает 1мкм. Отсюда следует, что использование жесткого стола способно снизить эффект технологического наследования. Решение уравнений позволяет также установить дополнительные горизонтальные смещения центра «зеркала» стола при его движении. Эти смещения непосредственно влияют на точность координатных перемещений. Для приведенных соотношений максимальная величина горизонтальных смещений составляет 0,4мкм.

Во втором случае использован нежесткий стол, который копирует направляющие станины, прилегая к ним на всей своей длине.

Траектория центра "зеркала" стола представляется линией, эквидистантной направляющим. Для соотношений, приведенных выше, максимальные вертикальные перемещения составляют 4мкм, а горизонтальные дополнительные смещения—0,5мкм. Указанный стол не может снизить эффект наследования.
2.4 Физико-механические характеристики поверхностных слоев в связи с особенностями конструктивных форм высокоточных деталей


Рассмотрим явления технологического наследования, которые связаны с влиянием конструктивных форм на физико-механические характеристики поверхностных слоев высокоточных деталей.

Это влияние можно показать на примере обработки пазов различных конструктивных форм. Если паз имеет V-образную форму, то сход стружки с его стенок затруднен: стружка, образуемая на одной стороне паза, мешает сходу стружки с другой стороны. Этот эффект усиливается с уменьшением переднего угла режущего инструмента и зависит, кроме того, от свойств материала обрабатываемой детали. Фрезерование или строгание трапецеидальных пазов сопровождается аналогичными явлениями. Особенно затруднен сход стружки с дна паза. Таким образом, процесс стружкообразования тесно связан с конструктивными формами пазов и оказывает существенное влияние на качество поверхности. Измерение вдоль V-образного паза с углом 60° и глубиной 5 мм показывает, что твердость по Виккерсу стальных образцов изменяется в зависимости от условий схода стружки. Наибольшее значение твердости наблюдается вдоль паза по вершине угла. В этом случае исходная твердость 270кгс/мм2 увеличилась на длине хода инструмента 20мм на 100кгс/мм2. У основания паза увеличение твердости составляет 40кгс/мм2. В обоих случаях увеличение твердости по длине паза подчиняется линейной зависимости. Если проанализировать трапецеидальные пазы той же глубины и выполненные на образцах из того же материала, можно убедиться в том, что форма паза изменяет количественную сторону распределения твердости. Качественная сторона дела остается прежней.



Рисунок 78 – Распределение твердости по профилю пазов различных форм
На рисунке 78 показано распределение твердости по профилю в поперечном сечении пазов различных форм. Во всех случаях образцы выполнены из одной и той же стали и обработаны инструментом с передним углом 15°. Изменение твердости у паза с углом 90°(рисунок 78,а) происходит менее интенсивно, чем у паза с углом 60° (рисунок 78,б). Некоторое различие можно видеть при сравнении графиков для трапецеидальных пазов одинаковой глубины, но с шириной основания паза 2,8 и 1,4мм (рисунок 78,в и гсоответственно). Отмеченный эффект может быть распространен и на пазы других форм. Различные комбинации конструктивных элементов также приводят в местах их сочетаний к изменению твердости и, следовательно, возникновению в поверхностных слоях сложной картины неравномерного напряженного состояния. Поэтому главным итогом таких опытов является установление факта влияния конструктивных параметров на напряженное состояние обработанной детали. Неравномерность распределения напряжений является одной из главных причин деформации высокоточных деталей в процессе их хранения или эксплуатации.

3.8.3 Задание к лабораторной работе
Изучить теоретическую часть и усвоить основные положения наследования конструктивных параметров детали при обработке её точных поверхностей.






Рисунок 79 – Схема измерения отклонений от круглости вала на кругломере «TALYROND –2» в сечении I-I, перпендикулярном оси детали

.

Рисунок 80 – Конструкция детали. 1 – круглограмма отклонений от круглости вала в сечении А-А




Рисунок 81 – Непрямолинейность образующей вала
2) Рассмотреть конструкцию предложенной детали (рисунок 80) определить характер влияния её конструктивных параметров на точность.

3) Составить в полярных координатах примерную диаграмму (круглограмму) отклонений от круглости точных поверхностей детали.

4) Обработать деталь на круглошлифовальном станке.

5) Произвести измерения отклонений от круглости точных поверхностей деталей на кругломере “TALYROND-2”. (рисунок 80).
3.8.4 Техническое оснащение лабораторной работы
1)Токарно-винторезный станок.

2)Горизонтально и вертикально-фрезерный станок.

3)Круглошлифовальный станок.

4)Кругломер «TALYROND-2».
3.8.5 Методика и порядок выполнения лабораторной работы
1) Произвести работу в соответствии с 1…5 параграфа "3 задание лабораторной работы".

2) Изучить полученные круглограммы.

3) Сделать выводы о характере наследования конструктивных элементов детали и влияния на качество обработки.

4) Ответить на контрольные вопросы для включения в отчёт.

5) Составить отчёт по лабораторной работе.
3.8.6 Контрольные вопросы
1) Как влияет конструктивные элементы деталей на точность (качество) при механической обработке?

2) Что такое отклонение от круглости?

3) Что такое отклонение от цилиндричности?

4) Что такое отклонение от прямолинейности образующей?

5) Выбор сечения детали для измерения погрешностей (отклонений от заданной геометрической формы).

6) Погрешности, вызываемые температурными деформациями при механической обработке?

3.8.7 Техника безопасности

1) Студент имеет право входа в лабораторию для выполнения лабораторных работ только после прохождения инструктажа по технике безопасности и росписи кафедральном журнале по технике безопасности.

2) При выполнении лабораторных работ студент обязан выполнять правила техники безопасности. За невыполнение правил техники безопасности студент отстраняется от занятий и решается вопрос на уровне заведующего кафедрой и директора о дальнейшем допуске или не допуске к занятиям.

Перед началом работы на станке ознакомиться с действующей инструкцией по охране труда и технике безопасности при работе на станках и строго выполнять ее требования.

Работа на станке без ознакомления с мерами безопасности запрещается!

Настройку станка и приспособления производить только при отключенном питании станка под руководством учебного мастера.

Запрещается производить действия, которые могут повлечь за собой тяжелые последствия (травмы): бесцельное нажатие кнопок, вращение рукояток, включение станка и т.д. Работу на станке выполнять под контролем учебного мастера и с его разрешения.

Запрещается совершать в лаборатории любые действия с приборами, имеющимися в лаборатории, ради любопытства, без необходимости, без ведома мастера и преподавателя. Категорически запрещается трогать органы управления и шпиндель кругломера.
3.8.8 Требования к отчету
В отчете должны быть отражены цель и задачи лабораторной работы, методика и порядок выполнения, ответы на контрольные вопросы, схема закрепления детали, измерений, данные измерений, совмещенная схема закрепления детали и круглограмма отверстия. Выводы. Предложения.
3.8.9 Литература
1. Дальский А.М. Технологическое обеспечение надежности высокоточных деталей машин. М. Маш. 1975. 224с.

2. Дальский А.М., Базров Б.М., Васильев А.С., Дмитриев А.М., Колесников А.Г., Кондаков А.И., Шачнев Ю.А.. Технологическая наследственность в машиностроительном производстве. М. Изд. МАИ. 2000. 360с.

3. Дальский А.М. (под редакцией). Технология машиностроения. В 2-х томах. 1 т. Основы технологии машиностроения. М.МГТУ им. Н.Э.Баумана. 1977. 563с.

4. Ящерицы П.И., Рыжов Э.В., Аверченков В.И. Технологическая наследственность в машиностроении. М. НиТ. 1977.

5. Когаев В.П., Дроздов Ю.Н. Прочность и износостойкость деталей машин. М. ВШ. 1991. ,319с.

6. Проников А.С. Надежность машин. М. Маш. 1978. 591с.

7. Аристов А.В. Управление качеством. М. Инфра М. 2000. 238с

Лабораторная работа 3. 9