Файл: 1. Свет. Интерференция света. Условие максимума и минимума интерференции.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 233

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Интерференция световых волн.

3. Интерференция света в тонких пленках или полосы ровного наклона.

Метод зон Френеля.

6.Дифракция Френеля на круглом отверстии и диске.

7.Дифракция Фраунгофера на прямоугольной щели.

8. Дисперсия и разрешающая сила спектрального прибора.

Анализ плоскополяризованного света. Закон Малюса. Глаз человека не может отличить поляризованный свет от естественного, поэтому для анализа поляризованного свет необходимо использовать поляризаторы, которые в этом случае называются анализаторами. Все ранее перечисленные поляризующие устройства можно использовать для анализа поляризации света. Анализи­ровать поляризованность света первым предложил французский физик Э. Малюс (1775-1812), установив закон изменения интен­сивности поляризованного света.Возьмем в качестве поляризатора и анализатора дихро­ичный кристалл турмалин (рис. 4.12). Пусть естественный свет падает пер­пендикулярно оптической оси ОО' поляризатора П. Через поляризатор сво­бодно пройдут колебания светового вектора, параллельные плоскости поляризатора. Колебания светового вектора, пер­пендикулярные плоскости поляризации, полностью поглотятся кристаллом турмалина. Ранее уже говорилось о том, что любое колебание вектора Ес можно представить как резуль­тат сложения двух взаимно перпендику­лярных векторов Ех и Еу (рис. 4. 2), а так как колебания вектора Ес естественного света хаотичны и равновероятны, то ин­тенсивность света, прошедшего через поляризатор, равна половине интенсив­ности падающего естественного света: Если плоско поляризованный свет падает на анализатор А (рис. 4.13), то через него пройдет только составляющая, параллельная главной плоскости анализатора: Е = Е0 cos,где  - угол между плоскостями поляризации поляризатора и анализатора. Так как интенсивность света пропорциональна квадрату амплитуды (I

Оптическая активность веществ. @

Поляризация света при отражении и преломлениина границе раздела

двух диэлектрических сред. Закон Брюстера.

4. 3. Поляризация света при двойном лучепреломлении.

11. Дисперсия света.

6. 1. Характеристики теплового излучения. @

Закон Кирхгофа.

Волновая функция, её статистический смысл. Задание состояния микрочастицы.

Уравнение Шредингера. Физические ограничения на вид волновой функции. Стационарное уравнение Шредингера, стационарные состояния.

28. Состав ядра. Характеристики ядра. Размеры ядер.

Энергия связи ядра. Дефект массы.

Модели ядра: капельная, оболочная. Ядерные силы. К настоящему времени еще нет последовательно законченной теории ядра, которая объясняла бы все его свойства. Это связано в основном с двумя трудностями: с недостаточностью наших знаний о силах взаимодействия нуклонов в ядре и с тем, что каждое атомное ядро - это квантовая система большого количества сильно взаимодействующих частиц. Поэтому в теории атомного ядра очень важную роль играют модели, достаточно хорошо описывающие определенную совокупность ядерных свойств и допускающие сравнительно простую математическую трактовку. При этом каждая модель обладает, естественно, ограниченными возможностями и не претендует на полное описание ядра. Наиболее популярны две основные модели ядра: капельная и оболочная.1. Капельная модель является простейшей моделью, в ней атомное ядро рассматривается как капля заряженной несжимаемой жидкости с очень высокой плотностью (

n–Em.

24. Опыт Франка и Герца.

Опыт Франка — Герца — опыт, явившийся экспериментальным доказательством дискретности внутренней энергии атома. Поставлен в 1913 Дж. Франком и Г. Герцем.



На рисунке приведена схема опыта. К катоду К и сетке C1 электровакуумной трубки, наполненной парами Hg (ртути), прикладывается разность потенциалов V, ускоряющая электроны, и снимается зависимость силы тока I от V. К сетке C2 и аноду А прикладывается замедляющая разность потенциалов. Ускоренные в области I электроны испытывают соударения с атомами Hg в области II. Если энергия электронов после соударения достаточна для преодоления замедляющего потенциала в области III, то они попадут на анод. Следовательно, показания гальванометра Г зависят от потери электронами энергии при ударе.

В опыте наблюдался монотонный рост I при увеличении ускоряющего потенциала вплоть до 4,9 В, то есть электроны с энергией Е < 4,9 эВ испытывали упругие соударения с атомами Hg и внутренняя энергия атомов не менялась. При значении V = 4,9 В (и кратных ему значениях 9,8 В, 14,7 В) появлялись резкие спады тока. Это определённым образом указывало на то, что при этих значениях V соударения электронов с атомами носят неупругий характер, то есть энергия электронов достаточна для возбуждения атомов Hg. При кратных 4,9 эв значениях энергии электроны могут испытывать неупругие столкновения несколько раз.

Таким образом, опыт Франка — Герца показал, что спектр поглощаемой атомом энергии не непрерывен, а дискретен, минимальная порция (квант электро-магнитного поля), которую может поглотить атом Hg, равна 4,9 эВ. Значение длины волны λ = 253,7 нм свечения паров Hg, возникавшее при V > 4,9 В, оказалось в соответствии со вторым постулатом Бора

,

где E0 и E1 — энергии основного и возбужденного уровней энергии. В опыте Франка — Герца, E0 — E1 = 4,9 эв.

Артур Комптон, повторив (1922—1923) опыт Франка — Герца, обнаружил, что при V > 4,9 В пары Hg начинают испускать свет с частотой

ν = ΔE/h, где ΔE = 4,9 эВ (h — постоянная Планка). Таким образом, возбуждённые электронным ударом атомы Hg испускают фотон с энергией 4,9 эВ и возвращаются в основное состояние.

25. Атом водорода. Общая формула Бальмера.


Атом водорода — физическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра может входить протон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон преимущественно находится в тонком концентрическом шаровом слое вокруг атомного ядра, образуя электронную оболочку атома. Наиболее вероятный радиус электронной оболочки атома водорода в стабильном состоянии равен боровскому радиусу a0 = 0,529 Å.

Строение и свойства атома водорода.

Образование атома водорода и его спектр излучения

При попадании в электрическое поле положительно заряженного протона отрицательно заряженного электрона происходит захват последнего протоном — образуется атом водорода. Образовавшийся атом водорода находится в возбуждённом состоянии. Время жизни атома водорода в возбуждённом состоянии — ничтожные доли секунды (10−8 — 10−10сек)[1], однако очень высоковозбуждённые атомы в бесстолкновительной среде могут существовать до секунд. Снятие возбуждения атома происходит за счёт излучения фотонов с фиксированной энергией, проявляющихся в характерном спектре излучения водорода. Поскольку газообразный атомарный водород содержит множество атомов в различных степенях возбуждения, спектр состоит из большого числа линий.

Линии спектра серии Лаймана обусловлены переходом электронов на нижний уровень с квантовым числом n = 1 с уровней с квантовыми числами n = 2, 3, 4, 5, 6… Линии Лаймана лежат в ультрафиолетовой области спектра. Линии спектра серии Бальмера обусловлены переходом электронов на уровень с квантовым числом n = 2 с уровней с квантовыми числами n = 3, 4, 5, 6… и лежат в видимой области спектра.

Линии спектра серий Пашена, Брэкета и Пфунда обусловлены переходом электронов на уровни с квантовыми числами n, равными 3, 4 и 5 (соответственно), и расположены в инфракрасной области спектра.[3].

В нормальном (основном) состоянии (главное квантовое число n = 1) атом водорода в изолированном виде может существовать неограниченное время. Согласно квантохимическим расчетам, радиус мест наибольшей вероятности нахождения электрона в атоме водорода в нормальном состоянии (главное квантовое число n = 1) равен 0,529 Å. Этот радиус является одной из основных атомных констант, он получил название боровский радиус (см. выше). При возбуждении атома водорода электрон проходит на более высокий квантовый уровень (n = 2, 3, 4 и т. д.), при этом радиус мест наибольшей вероятности нахождения электрона в атоме возрастает пропорционально квадрату главного квантового числа: rn = a0 · n2.



Се́рия Ба́льмера — спектральная серия, наблюдающаяся для атомов водорода. Названа в честь швейцарского физика Иоганна Бальмера , описавшего в 1885 году эту серию формулой.

где n = 3, 4, 5, 6; b = 3645,6 Å

26. Квантовая механическая задача об атоме водорода.

27. Квантовые числа m, n, l. Графическое представление энергитических параметров.

Квантово-механическая теория атома, построенная на уравнении Шредингера, гораздо совершеннее полу‑классичекой теории атома Бора, построенной на ряде постулатов. Она сохраняет некоторые аспекты старой теории – например, электроны могут находиться в атоме только в состояниях с определенной дискретной энергией; при переходе электрона из одного состояния в другое испускается (или поглощается) фотон. Но квантовая механика не просто дополняет теорию Бора, она рисует совершенно иную картину строения атома. Согласно квантовой механике, не существует определенных круговых орбит у электронов, как в теории Бора. В силу волновой природы электрон «размазан» в пространстве, т.е. может с определенной вероятностью находится в любой точке пространства.

При рассмотрении атома водорода, движение его единственного электрона можно рассматривать как движение в электрическом поле ядра. По аналогии с задачей о движении частицы в потенциальной яме простой формы, здесь необходимо найти решения стационарного уравнения Шредингера в трехмерном пространстве с конкретным видом потенциальной энергии, описывающем его электростатическое взаимодействие с ядром

. (2.1)

При решении уравнения Шредингера в данном случае используют специальные функции математической физики - сферические функции и сферическую систему координат, центр которой совпадает с центром ядра атома. Если записать уравнение Шредингера в сферических координатах (r, , ), то его можно строго аналитически решить, это решение представляют в виде произведения трех функций

(2.2)


Важной особенностью решения является его зависимость от трех чисел n, l, m, называемых квантовыми числами. В квантовой механике каждому решению соответствует определенное состояние атома со своим распределением электрона вокруг ядра, которое задается соответствующей волновой функцией, зависящей от трех квантовых чисел: n, l, m.

Квантовое число n называется главным квантовым числом, от него зависит значение полной энергии атома водорода, при этом атом может иметь не любые значения энергии Е, а лишь некоторые Еn. Квантовое число n может принимать следующий ряд значений n = 1, 2, 3, … . Значения энергии Еn, которые может иметь атом, называют разрешенными значениями энергии атома, а их совокупность Е1, Е2, … Е представляет собой энергетический спектр атома. Разрешенные значения энергии обычно изображаются в виде горизонтальных линий, называемых энергетическими уровнями. Для атома водорода квантовая механика предсказывает точно такие же энергетические уровни, что и теория Бора, т.е.

. (2.3)

Состояние атома с наименьшей энергией называется основным (n = 1), все остальные состояния – возбужденными (см. рис.8).



Рис.8. Схема энергетических уровней атома водорода.

Орбитальное квантовое число l связано с моментом импульса орбитального движения электрона вокруг ядра. Так как электрон имеет электрический заряд, то его движение вокруг ядра приводит к появлению магнитного момента, аналогичного магнитному моменту кругового витка с током. Орбитальное квантовое число l может принимать целочисленные значения от 0 до n -1, оно квантует величину момента импульса L и магнитного момента согласно соотношениям

, (2.4)

где Б - постоянная, служащая единицей измерения магнитных моментов атомов и называемая магнетоном Бора. Сравнивая формулу квантования момента импульса с формулой квантования в теории Бора, можно заметить, что они не совпадают. Более того, при l=0, в квантовой механике возможны состояния атома с нулевым моментом импульса электрона. Опыт подтверждает существование квантовых состояний атома с нулевыми орбитальными моментами, хотя при классическом описании движения электрона в атоме по определенной орбите атом должен всегда обладать ненулевым моментом импульса.


Магнитное квантовое число m характеризует ориентацию момента импульса L и магнитного момента во внешнем силовом поле (например, магнитном или электрическом) и может принимать целочисленные значения от –l до + l . Согласно классической теории магнитный момент всегда стремится повернуться вдоль направления магнитного поля. В квантовой механике движение электрона таково, что магнитный момент может быть направлен в нескольких, строго определенных направлениях в зависимости от состояния атома, то есть он квантуется не только по величине, но и по направлению. Такое пространственное квантование приводит к тому, что проекции момента импульса и магнитного момента электрона на выделенное в пространстве направление могут иметь только строго определенные значения. Ориентацию магнитного момента и момента импульса задают как и в классической физике, указывая его компоненту вдоль оси z, совпадающей с направлением магнитного поля. В квантовой механике возможные проекции Lz и z определяются магнитным квантовым числом m с помощью соотношений

(2.5)

Так как формула квантования проекции механического момента соответствует вполне определенным направлениям ориентации в пространстве векторов L и , то эту формулу называют обычно формулой пространственного квантования. С точки зрения классического представления об электронной орбите, эта формула определяет возможные дискретные расположения электронных орбит в пространстве по отношению к направлению внешнего поля. По отношению к другим координатам x и y положение векторов момента импульса L и магнитного момента меняется так, как если бы они вращались вокруг оси z. Такое вращение называется прецессией (см. Рис. 9).



Рис. 9. Пространственное квантование момента импульса для состояния l=1 и траектории прецессии.