Файл: 1. Свет. Интерференция света. Условие максимума и минимума интерференции.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 229

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Интерференция световых волн.

3. Интерференция света в тонких пленках или полосы ровного наклона.

Метод зон Френеля.

6.Дифракция Френеля на круглом отверстии и диске.

7.Дифракция Фраунгофера на прямоугольной щели.

8. Дисперсия и разрешающая сила спектрального прибора.

Анализ плоскополяризованного света. Закон Малюса. Глаз человека не может отличить поляризованный свет от естественного, поэтому для анализа поляризованного свет необходимо использовать поляризаторы, которые в этом случае называются анализаторами. Все ранее перечисленные поляризующие устройства можно использовать для анализа поляризации света. Анализи­ровать поляризованность света первым предложил французский физик Э. Малюс (1775-1812), установив закон изменения интен­сивности поляризованного света.Возьмем в качестве поляризатора и анализатора дихро­ичный кристалл турмалин (рис. 4.12). Пусть естественный свет падает пер­пендикулярно оптической оси ОО' поляризатора П. Через поляризатор сво­бодно пройдут колебания светового вектора, параллельные плоскости поляризатора. Колебания светового вектора, пер­пендикулярные плоскости поляризации, полностью поглотятся кристаллом турмалина. Ранее уже говорилось о том, что любое колебание вектора Ес можно представить как резуль­тат сложения двух взаимно перпендику­лярных векторов Ех и Еу (рис. 4. 2), а так как колебания вектора Ес естественного света хаотичны и равновероятны, то ин­тенсивность света, прошедшего через поляризатор, равна половине интенсив­ности падающего естественного света: Если плоско поляризованный свет падает на анализатор А (рис. 4.13), то через него пройдет только составляющая, параллельная главной плоскости анализатора: Е = Е0 cos,где  - угол между плоскостями поляризации поляризатора и анализатора. Так как интенсивность света пропорциональна квадрату амплитуды (I

Оптическая активность веществ. @

Поляризация света при отражении и преломлениина границе раздела

двух диэлектрических сред. Закон Брюстера.

4. 3. Поляризация света при двойном лучепреломлении.

11. Дисперсия света.

6. 1. Характеристики теплового излучения. @

Закон Кирхгофа.

Волновая функция, её статистический смысл. Задание состояния микрочастицы.

Уравнение Шредингера. Физические ограничения на вид волновой функции. Стационарное уравнение Шредингера, стационарные состояния.

28. Состав ядра. Характеристики ядра. Размеры ядер.

Энергия связи ядра. Дефект массы.

Модели ядра: капельная, оболочная. Ядерные силы. К настоящему времени еще нет последовательно законченной теории ядра, которая объясняла бы все его свойства. Это связано в основном с двумя трудностями: с недостаточностью наших знаний о силах взаимодействия нуклонов в ядре и с тем, что каждое атомное ядро - это квантовая система большого количества сильно взаимодействующих частиц. Поэтому в теории атомного ядра очень важную роль играют модели, достаточно хорошо описывающие определенную совокупность ядерных свойств и допускающие сравнительно простую математическую трактовку. При этом каждая модель обладает, естественно, ограниченными возможностями и не претендует на полное описание ядра. Наиболее популярны две основные модели ядра: капельная и оболочная.1. Капельная модель является простейшей моделью, в ней атомное ядро рассматривается как капля заряженной несжимаемой жидкости с очень высокой плотностью (

Е = Еm+1/2. Таким образом, при дифракции на круглом не­прозрачном диске в центре экрана получается светлое пятно (т.к. интенсив­ность здесь отлична от нуля), ок­руженное чередующимися концентрическими коль­цами минимумов и макси­мумов.


7.Дифракция Фраунгофера на прямоугольной щели.


Д ифракцию в парал­лельных лучах или дифракцию плоских волн впервые иссле­довал немецкий физик И. Фра­унгофер в 1821-1822гг. Пусть плоская монохроматическая волна падает нормально на не­прозрачный экран Э1 с длинной узкой щелью АВ шириной а (рис. 3.6). Согласно принципу Гюйгенса – Френеля все точки щели можно рассматривать как вторичные источники световых волн, колеблющихся в одной фазе (так как плоскость щели есть часть волновой поверхности падающей плоской волны), и распространяющихся во всех направлениях. Из всего многооб­разия направлений выберем одно произвольное и будем рас­сматривать лучи, идущие под углом φ к падающим лучам. Па­раллельно экрану Э1 поместим линзу Л, а в ее фокальной плос­кости – экран Э2, на котором лучи соберутся в некоторой точке Р. Опустим перпендикуляр АС из точки А на крайний луч. АС представляет собой волновую поверхность для лучей, идущих под углом φ и, согласно определению, все точки данной поверх­ности колеблются в одной фазе. Поэтому отрезок ВС является оптической разностью хода между крайними лучами пучка, ВС = Δ = аsinφ. Поделим участок ВС на отрезки, равные λ/2 и из то­чек деления проведем плоскости, параллельные АС до пересе­чения с АВ (эти плоскости перпендикулярны рисунку и поэтому на нем изображены как прямые линии). Эти плоскости поделят щель АВ на равные полоски, которые являются зонами Френеля, т.к. световые волны, идущие от соседних полосок, имеют раз­ность хода λ/2 (см. рис. 3.6). Если число зон будет четным, они попарно погасят друг друга, и в точке Р будет наблюдаться ми­нимум освещенности. Четное число отрезков на участке ВС со­ответствует условию аsinφ = ±2m λ/2, где m = 1,2,3…Это усло­вие называется условием дифракционного минимума. Из него находятся углы, под которыми наблюдаются дифракционные минимумы на экране. Знак “минус” соответствует лучам, иду­щим от щели под углом –φ.

Если число зон Френеля нечетно, на экране в точке Р по­лучается дифракционный максимум. Условие дифракционного максимума

имеет вид

аsinφ = ±(2m + 1)λ/2, где m= 1, 2, 3…

Это условие определяет углы, соответствующие макси­мумам освещенности на экране Э2. Число m называется поряд­ком дифракционного максимума или минимума.

В центральной точке экрана О соберутся лучи, идущие в направлении φ = 0, следовательно, без разности хода. В этом на­правлении щель действует как одна зона Френеля, создавая в точке О самый интенсивный максимум нулевого порядка. Это будет светлая полоса, повторяющая форму щели. Дифракцион­ная картина от щели симметрична относительно точки О и ин­тенсивности максимумов более высоких порядков уменьшаются в пропорции 1 : 0,047 : 0,017 : 0,008…

Дифракционная картина на экране зависит от отношения длины волны падающего монохроматического излучения λ к ширине щели а. Из условия дифракционного минимума , следовательно расстояния от центра картины до мини­мумов возрастают с уменьшением а. Центральная светлая полоса при этом расширяется. При а«λ вся поверхность щели будет небольшой частью лишь одной зоны Френеля. Такую щель можно считать линейным источником света, колебания от которого будут распространяться в одной фазе и дифракцион­ной картины не наблюдается. При а»λ в центре экрана получа­ется широкая равномерно освещенная полоса, обусловленная беспрепятственным прямолинейным распространением света от источника, и на ее краях наблюдаются очень узкие дифракцион­ные полосы.

При освещении щели белым светом дифракционные мак­симумы, соответствующие различным длинам волн пространст­венно разделятся. Чем меньше длина волны, тем ближе к центру экрана будет располагаться ее максимум. Это следует из усло­вия максимума при дифракции от одной щели. В центре экрана объединятся лучи всех длин волн, так как здесь угол φ = 0 и раз­ность хода Δ = 0, поэтому центральный максимум будет белым. Максимумы первого, второго и высших порядков разложатся в спектры, обращенные фиолетовым краем к центру экрана. По­добные спектры расплывчаты, поэтому четкое разделение по длинам волн при дифракции от одной щели получить не уда­ется. Для получения более качественной дифракционной кар­тины свет от источника необходимо пропустить через несколько параллельных щелей.


8. Дисперсия и разрешающая сила спектрального прибора.


О сновными характеристиками любого спектрального прибора, в том числе и дифракционной решетки, являются его дисперсия и разрешающая сила. От их величин зависит способ­ность прибора пространственно разделить лучи разных длин волн. Линейная дисперсия D определя­ется как отношение , где dl - расстоя­ние между спектральными линиями, а dλ – разность длин волн этих линий. Определение справедливо также для разности частот линий dν. Угловая диспер­сия , где dφ – разность углов между лучами, отличающимися на dλ или dν со­ответственно. На рис. 3.9 показаны два луча, идущие под углами φ и φ + dφ, и имеющие длины волн λ и λ + dλ, соответственно.

Для определения угловой дисперсии дифракционной ре­шетки продифференцируем условие главного максимума dsinφ = = mλ. Мы получим

dcosφ dφ = mdλ,

откуда следует . При малых углах cosφ≈1 и Q ≈ ≈m/d, т.е. чем выше порядок спектра и меньше период решетки, тем больше угловая дисперсия. Она не зависит от числа щелей в решетке и характеризует степень растянутости спектра в об­ласти данной длины волны.

Р азрешающая сила спектрального прибора R показывает, какие близкие спектральные линии λ1 и λ2 с разностью длин dλ = λ2 - λ1 можно визуально разделить в спектре. , где λ – средняя длина волны разрещаемых линий λ1 и λ2. На рис. 3.10 пунктиром представлены две близкие спектральные линии, а сплошной кривой показаны наблюдаемые результирующие ин­тенсивности. В случае а) обе линии воспринимаются как одна, в случае б) линии воспринимаются раздельно. Это происходит потому, что возможность визуального разделения линий зависит также от их ширины. Согласно критерию, предложенному анг­лийским физиком Д.Рэлеем, спектральные линии считаются разрешенными, если максимум одной из них совпадает с мини­мумом другой (рис. 3.10 б).

Разрешающая сила дифракционной решетки
R пропор­циональна числу щелей N и порядку спектра m, т.е. R = Nm. Приравняв друг другу два выражения для разрешающей силы, мы получим условие разрешимости линий . Если , то спектральные ли­нии разрешаются, если , линии не разрешаются.

9.Поляризация света. Закон Малюса. Вращение плоскасти поляризации. Закон Фарадея.



Из теории Максвелла сле­дует, что свет представляет совокупность множества по­перечных электромагнитных волн: векторы напряженностей электрического Еi и магнитного Hi полей у каждой волны взаимно перпендику­лярны и колеблются перпенди­кулярно скорости υ рас­пространения волны

Свет представляет собой сово­купность световых волн, излучаемых множеством отдельных атомов, которые излучают световые волны независимо друг от друга, поэтому световые волны со всевозможными равновероят­ными колебаниями векторов Еi называется естественным (рис. 4.1 а). Свет, в котором существует преимущест­венная (но не единственная) ориентация колебаний векторов Еi для всех волн называется частично поляризованным (рис. 4.1 б). Степень поляризации света определяется выражением:



где Imax –интенсивность колебаний преобладающего направле­ния; Imin - интенсивность колебаний в направлении, перпендику­лярном преобладающему. Для естественного света (Imax = Imin) степень поляризации Р = 0. Различают три вида поляризации света: эллиптическую, круговую и плоскую (или линейную). С точки зрения математики колебания светового век­тора Ес в любой точке пространства можно представить резуль­татом сложения двух взаимно перпендикулярных линейно поля­ризованных колебаний векторов Ех и Еу (рис. 4.2), которые колеблются по законам

Е