Файл: 1. Свет. Интерференция света. Условие максимума и минимума интерференции.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.11.2023
Просмотров: 229
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
3. Интерференция света в тонких пленках или полосы ровного наклона.
6.Дифракция Френеля на круглом отверстии и диске.
7.Дифракция Фраунгофера на прямоугольной щели.
8. Дисперсия и разрешающая сила спектрального прибора.
Оптическая активность веществ. @
Поляризация света при отражении и преломлениина границе раздела
двух диэлектрических сред. Закон Брюстера.
4. 3. Поляризация света при двойном лучепреломлении.
6. 1. Характеристики теплового излучения. @
Волновая функция, её статистический смысл. Задание состояния микрочастицы.
28. Состав ядра. Характеристики ядра. Размеры ядер.
Е = Еm+1/2. Таким образом, при дифракции на круглом непрозрачном диске в центре экрана получается светлое пятно (т.к. интенсивность здесь отлична от нуля), окруженное чередующимися концентрическими кольцами минимумов и максимумов.
Д ифракцию в параллельных лучах или дифракцию плоских волн впервые исследовал немецкий физик И. Фраунгофер в 1821-1822гг. Пусть плоская монохроматическая волна падает нормально на непрозрачный экран Э1 с длинной узкой щелью АВ шириной а (рис. 3.6). Согласно принципу Гюйгенса – Френеля все точки щели можно рассматривать как вторичные источники световых волн, колеблющихся в одной фазе (так как плоскость щели есть часть волновой поверхности падающей плоской волны), и распространяющихся во всех направлениях. Из всего многообразия направлений выберем одно произвольное и будем рассматривать лучи, идущие под углом φ к падающим лучам. Параллельно экрану Э1 поместим линзу Л, а в ее фокальной плоскости – экран Э2, на котором лучи соберутся в некоторой точке Р. Опустим перпендикуляр АС из точки А на крайний луч. АС представляет собой волновую поверхность для лучей, идущих под углом φ и, согласно определению, все точки данной поверхности колеблются в одной фазе. Поэтому отрезок ВС является оптической разностью хода между крайними лучами пучка, ВС = Δ = аsinφ. Поделим участок ВС на отрезки, равные λ/2 и из точек деления проведем плоскости, параллельные АС до пересечения с АВ (эти плоскости перпендикулярны рисунку и поэтому на нем изображены как прямые линии). Эти плоскости поделят щель АВ на равные полоски, которые являются зонами Френеля, т.к. световые волны, идущие от соседних полосок, имеют разность хода λ/2 (см. рис. 3.6). Если число зон будет четным, они попарно погасят друг друга, и в точке Р будет наблюдаться минимум освещенности. Четное число отрезков на участке ВС соответствует условию аsinφ = ±2m λ/2, где m = 1,2,3…Это условие называется условием дифракционного минимума. Из него находятся углы, под которыми наблюдаются дифракционные минимумы на экране. Знак “минус” соответствует лучам, идущим от щели под углом –φ.
Если число зон Френеля нечетно, на экране в точке Р получается дифракционный максимум. Условие дифракционного максимума
имеет вид
аsinφ = ±(2m + 1)λ/2, где m= 1, 2, 3…
Это условие определяет углы, соответствующие максимумам освещенности на экране Э2. Число m называется порядком дифракционного максимума или минимума.
В центральной точке экрана О соберутся лучи, идущие в направлении φ = 0, следовательно, без разности хода. В этом направлении щель действует как одна зона Френеля, создавая в точке О самый интенсивный максимум нулевого порядка. Это будет светлая полоса, повторяющая форму щели. Дифракционная картина от щели симметрична относительно точки О и интенсивности максимумов более высоких порядков уменьшаются в пропорции 1 : 0,047 : 0,017 : 0,008…
Дифракционная картина на экране зависит от отношения длины волны падающего монохроматического излучения λ к ширине щели а. Из условия дифракционного минимума , следовательно расстояния от центра картины до минимумов возрастают с уменьшением а. Центральная светлая полоса при этом расширяется. При а«λ вся поверхность щели будет небольшой частью лишь одной зоны Френеля. Такую щель можно считать линейным источником света, колебания от которого будут распространяться в одной фазе и дифракционной картины не наблюдается. При а»λ в центре экрана получается широкая равномерно освещенная полоса, обусловленная беспрепятственным прямолинейным распространением света от источника, и на ее краях наблюдаются очень узкие дифракционные полосы.
При освещении щели белым светом дифракционные максимумы, соответствующие различным длинам волн пространственно разделятся. Чем меньше длина волны, тем ближе к центру экрана будет располагаться ее максимум. Это следует из условия максимума при дифракции от одной щели. В центре экрана объединятся лучи всех длин волн, так как здесь угол φ = 0 и разность хода Δ = 0, поэтому центральный максимум будет белым. Максимумы первого, второго и высших порядков разложатся в спектры, обращенные фиолетовым краем к центру экрана. Подобные спектры расплывчаты, поэтому четкое разделение по длинам волн при дифракции от одной щели получить не удается. Для получения более качественной дифракционной картины свет от источника необходимо пропустить через несколько параллельных щелей.
О сновными характеристиками любого спектрального прибора, в том числе и дифракционной решетки, являются его дисперсия и разрешающая сила. От их величин зависит способность прибора пространственно разделить лучи разных длин волн. Линейная дисперсия D определяется как отношение , где dl - расстояние между спектральными линиями, а dλ – разность длин волн этих линий. Определение справедливо также для разности частот линий dν. Угловая дисперсия , где dφ – разность углов между лучами, отличающимися на dλ или dν соответственно. На рис. 3.9 показаны два луча, идущие под углами φ и φ + dφ, и имеющие длины волн λ и λ + dλ, соответственно.
Для определения угловой дисперсии дифракционной решетки продифференцируем условие главного максимума dsinφ = = mλ. Мы получим
dcosφ dφ = mdλ,
откуда следует . При малых углах cosφ≈1 и Q ≈ ≈m/d, т.е. чем выше порядок спектра и меньше период решетки, тем больше угловая дисперсия. Она не зависит от числа щелей в решетке и характеризует степень растянутости спектра в области данной длины волны.
Р азрешающая сила спектрального прибора R показывает, какие близкие спектральные линии λ1 и λ2 с разностью длин dλ = λ2 - λ1 можно визуально разделить в спектре. , где λ – средняя длина волны разрещаемых линий λ1 и λ2. На рис. 3.10 пунктиром представлены две близкие спектральные линии, а сплошной кривой показаны наблюдаемые результирующие интенсивности. В случае а) обе линии воспринимаются как одна, в случае б) линии воспринимаются раздельно. Это происходит потому, что возможность визуального разделения линий зависит также от их ширины. Согласно критерию, предложенному английским физиком Д.Рэлеем, спектральные линии считаются разрешенными, если максимум одной из них совпадает с минимумом другой (рис. 3.10 б).
Разрешающая сила дифракционной решетки
R пропорциональна числу щелей N и порядку спектра m, т.е. R = Nm. Приравняв друг другу два выражения для разрешающей силы, мы получим условие разрешимости линий . Если , то спектральные линии разрешаются, если , линии не разрешаются.
9.Поляризация света. Закон Малюса. Вращение плоскасти поляризации. Закон Фарадея.
Из теории Максвелла следует, что свет представляет совокупность множества поперечных электромагнитных волн: векторы напряженностей электрического Еi и магнитного Hi полей у каждой волны взаимно перпендикулярны и колеблются перпендикулярно скорости υ распространения волны
Свет представляет собой совокупность световых волн, излучаемых множеством отдельных атомов, которые излучают световые волны независимо друг от друга, поэтому световые волны со всевозможными равновероятными колебаниями векторов Еi называется естественным (рис. 4.1 а). Свет, в котором существует преимущественная (но не единственная) ориентация колебаний векторов Еi для всех волн называется частично поляризованным (рис. 4.1 б). Степень поляризации света определяется выражением:
где Imax –интенсивность колебаний преобладающего направления; Imin - интенсивность колебаний в направлении, перпендикулярном преобладающему. Для естественного света (Imax = Imin) степень поляризации Р = 0. Различают три вида поляризации света: эллиптическую, круговую и плоскую (или линейную). С точки зрения математики колебания светового вектора Ес в любой точке пространства можно представить результатом сложения двух взаимно перпендикулярных линейно поляризованных колебаний векторов Ех и Еу (рис. 4.2), которые колеблются по законам
Е
7.Дифракция Фраунгофера на прямоугольной щели.
Д ифракцию в параллельных лучах или дифракцию плоских волн впервые исследовал немецкий физик И. Фраунгофер в 1821-1822гг. Пусть плоская монохроматическая волна падает нормально на непрозрачный экран Э1 с длинной узкой щелью АВ шириной а (рис. 3.6). Согласно принципу Гюйгенса – Френеля все точки щели можно рассматривать как вторичные источники световых волн, колеблющихся в одной фазе (так как плоскость щели есть часть волновой поверхности падающей плоской волны), и распространяющихся во всех направлениях. Из всего многообразия направлений выберем одно произвольное и будем рассматривать лучи, идущие под углом φ к падающим лучам. Параллельно экрану Э1 поместим линзу Л, а в ее фокальной плоскости – экран Э2, на котором лучи соберутся в некоторой точке Р. Опустим перпендикуляр АС из точки А на крайний луч. АС представляет собой волновую поверхность для лучей, идущих под углом φ и, согласно определению, все точки данной поверхности колеблются в одной фазе. Поэтому отрезок ВС является оптической разностью хода между крайними лучами пучка, ВС = Δ = аsinφ. Поделим участок ВС на отрезки, равные λ/2 и из точек деления проведем плоскости, параллельные АС до пересечения с АВ (эти плоскости перпендикулярны рисунку и поэтому на нем изображены как прямые линии). Эти плоскости поделят щель АВ на равные полоски, которые являются зонами Френеля, т.к. световые волны, идущие от соседних полосок, имеют разность хода λ/2 (см. рис. 3.6). Если число зон будет четным, они попарно погасят друг друга, и в точке Р будет наблюдаться минимум освещенности. Четное число отрезков на участке ВС соответствует условию аsinφ = ±2m λ/2, где m = 1,2,3…Это условие называется условием дифракционного минимума. Из него находятся углы, под которыми наблюдаются дифракционные минимумы на экране. Знак “минус” соответствует лучам, идущим от щели под углом –φ.
Если число зон Френеля нечетно, на экране в точке Р получается дифракционный максимум. Условие дифракционного максимума
имеет вид
аsinφ = ±(2m + 1)λ/2, где m= 1, 2, 3…
Это условие определяет углы, соответствующие максимумам освещенности на экране Э2. Число m называется порядком дифракционного максимума или минимума.
В центральной точке экрана О соберутся лучи, идущие в направлении φ = 0, следовательно, без разности хода. В этом направлении щель действует как одна зона Френеля, создавая в точке О самый интенсивный максимум нулевого порядка. Это будет светлая полоса, повторяющая форму щели. Дифракционная картина от щели симметрична относительно точки О и интенсивности максимумов более высоких порядков уменьшаются в пропорции 1 : 0,047 : 0,017 : 0,008…
Дифракционная картина на экране зависит от отношения длины волны падающего монохроматического излучения λ к ширине щели а. Из условия дифракционного минимума , следовательно расстояния от центра картины до минимумов возрастают с уменьшением а. Центральная светлая полоса при этом расширяется. При а«λ вся поверхность щели будет небольшой частью лишь одной зоны Френеля. Такую щель можно считать линейным источником света, колебания от которого будут распространяться в одной фазе и дифракционной картины не наблюдается. При а»λ в центре экрана получается широкая равномерно освещенная полоса, обусловленная беспрепятственным прямолинейным распространением света от источника, и на ее краях наблюдаются очень узкие дифракционные полосы.
При освещении щели белым светом дифракционные максимумы, соответствующие различным длинам волн пространственно разделятся. Чем меньше длина волны, тем ближе к центру экрана будет располагаться ее максимум. Это следует из условия максимума при дифракции от одной щели. В центре экрана объединятся лучи всех длин волн, так как здесь угол φ = 0 и разность хода Δ = 0, поэтому центральный максимум будет белым. Максимумы первого, второго и высших порядков разложатся в спектры, обращенные фиолетовым краем к центру экрана. Подобные спектры расплывчаты, поэтому четкое разделение по длинам волн при дифракции от одной щели получить не удается. Для получения более качественной дифракционной картины свет от источника необходимо пропустить через несколько параллельных щелей.
8. Дисперсия и разрешающая сила спектрального прибора.
О сновными характеристиками любого спектрального прибора, в том числе и дифракционной решетки, являются его дисперсия и разрешающая сила. От их величин зависит способность прибора пространственно разделить лучи разных длин волн. Линейная дисперсия D определяется как отношение , где dl - расстояние между спектральными линиями, а dλ – разность длин волн этих линий. Определение справедливо также для разности частот линий dν. Угловая дисперсия , где dφ – разность углов между лучами, отличающимися на dλ или dν соответственно. На рис. 3.9 показаны два луча, идущие под углами φ и φ + dφ, и имеющие длины волн λ и λ + dλ, соответственно.
Для определения угловой дисперсии дифракционной решетки продифференцируем условие главного максимума dsinφ = = mλ. Мы получим
dcosφ dφ = mdλ,
откуда следует . При малых углах cosφ≈1 и Q ≈ ≈m/d, т.е. чем выше порядок спектра и меньше период решетки, тем больше угловая дисперсия. Она не зависит от числа щелей в решетке и характеризует степень растянутости спектра в области данной длины волны.
Р азрешающая сила спектрального прибора R показывает, какие близкие спектральные линии λ1 и λ2 с разностью длин dλ = λ2 - λ1 можно визуально разделить в спектре. , где λ – средняя длина волны разрещаемых линий λ1 и λ2. На рис. 3.10 пунктиром представлены две близкие спектральные линии, а сплошной кривой показаны наблюдаемые результирующие интенсивности. В случае а) обе линии воспринимаются как одна, в случае б) линии воспринимаются раздельно. Это происходит потому, что возможность визуального разделения линий зависит также от их ширины. Согласно критерию, предложенному английским физиком Д.Рэлеем, спектральные линии считаются разрешенными, если максимум одной из них совпадает с минимумом другой (рис. 3.10 б).
Разрешающая сила дифракционной решетки
R пропорциональна числу щелей N и порядку спектра m, т.е. R = Nm. Приравняв друг другу два выражения для разрешающей силы, мы получим условие разрешимости линий . Если , то спектральные линии разрешаются, если , линии не разрешаются.
9.Поляризация света. Закон Малюса. Вращение плоскасти поляризации. Закон Фарадея.
Из теории Максвелла следует, что свет представляет совокупность множества поперечных электромагнитных волн: векторы напряженностей электрического Еi и магнитного Hi полей у каждой волны взаимно перпендикулярны и колеблются перпендикулярно скорости υ распространения волны
Свет представляет собой совокупность световых волн, излучаемых множеством отдельных атомов, которые излучают световые волны независимо друг от друга, поэтому световые волны со всевозможными равновероятными колебаниями векторов Еi называется естественным (рис. 4.1 а). Свет, в котором существует преимущественная (но не единственная) ориентация колебаний векторов Еi для всех волн называется частично поляризованным (рис. 4.1 б). Степень поляризации света определяется выражением:
где Imax –интенсивность колебаний преобладающего направления; Imin - интенсивность колебаний в направлении, перпендикулярном преобладающему. Для естественного света (Imax = Imin) степень поляризации Р = 0. Различают три вида поляризации света: эллиптическую, круговую и плоскую (или линейную). С точки зрения математики колебания светового вектора Ес в любой точке пространства можно представить результатом сложения двух взаимно перпендикулярных линейно поляризованных колебаний векторов Ех и Еу (рис. 4.2), которые колеблются по законам
Е