ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 30.11.2023
Просмотров: 125
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, (1.12.1)
. В нашем случае , т. е. код практически не имеет избыточности. Видно, что среднее число двоичных символов стремится к энтропии сообщения.
Вторая теорема Шеннона устанавливает принципы помехоустойчивого кодирования. Оказывается, что даже при наличии помех в канале связи всегда можно найти такую систему кодирования, при которой сообщение будет передано с заданной достоверностью. Основная идея всех таких кодов заключается в следующем: для исправления возможных ошибок вместе с основным сообщением нужно передавать какую-то дополнительную информацию. Для реализации контроля возможных ошибок используются так называемые самокорректирующие коды, а по каналу связи вместе с символами основного сообщения передаются ещё дополнительных символов, обеспечивающих избыточность кодирования и позволяющих противодействовать помехам.
Учение о высказываниях — алгебра высказываний или алгебра логики является простейшей логической теорией. Она рассматривает конечные конфигурации символов и взаимоотношения между ними.
Высказывание — это всякое повествовательное предложение, утверждающее что-либо о чем-либо, при этом непременно истинное или ложное. Логическими значениями высказываний являются "истина" и "ложь", обозначаемые 1 и 0. Высказывания, представляющие собой одно утверждение, называются простыми или элементарными, высказывания, получающиеся из элементарных с помощью грамматических связок "не", "и", "или", "если… , то…", называются сложными. Эти названия не носят абсолютного характера, высказывания, которые в одной ситуации можно считать простыми, в другой ситуации будут сложными. В алгебре логики все высказывания рассматриваются только с точки зрения их логического значения, житейское содержание игнорируется. Каждое высказывание может быть либо истинным, либо ложным, ни одно высказывание не может быть одновременно истинным и ложным. Элементарные высказывания обозначаются строчными буквами латинского алфавита: а, b, с. Из высказываний с помощью логических связок образуются новые высказывания. Рассмотрим наиболее употребительные логические связки.
Отрицанием высказывания называется новое высказывание, которое является истинным, если высказывание ложно, и ложным, если — истинно. Обозначается , читается "не " или "неверно, что ". Все логические значения высказывания
можно описать с помощью табл. 1.13. Если — высказывание, то — противоположное высказывание. Тогда можно образовать , которое называется двойным отрицанием высказывания. Логические значения , очевидно, совпадают со значениями . Эта операция одноместная — в том смысле, что из одного данного простого высказывания строится новое высказывание .
Логическое умножение (конъюнкция). Конъюнкцией двух высказываний и называется новое высказывание , которое истинно только когда оба высказывания и истинны, и ложно, когда хотя бы одно из и ложно. Обозначается или , читается " и ". Таблица истинности конъюнкции дана в табл. 1.14. Из определения операции конъюнкции видно, что союз "и" в алгебре логики употребляется в том же смысле, что и в повседневной речи. Однако в алгебре логики этой связкой можно связывать любые, сколь угодно далекие по смыслу высказывания. Конъюнкцию часто называют логическим умножением.
Таблица 1.13 Таблица 1.14
Логическое сложение (дизъюнкция). Дизъюнкцией двух высказываний и называется новое высказывание, которое считается истинным, если хотя бы одно из высказываний и истинно, и ложным, если они оба ложны. Обозначается , читается " или ". Логические значения дизъюнкции описываются в табл.1.15.
Таблица 1.15 Таблица 1.16
Импликация или логическое следование. Импликацией двух высказываний и называется новое высказывание, которое считается ложным, когда истинно, а y ложно, и истинным во всех остальных случаях. Обозначается , читается "если , то " или "из следует ". Высказывание называется условием или посылкой, высказывание — следствием или заключением. Таблица истинности этой операции приведена в табл. 1.16. Из таблицы истинности видно, что если условие — истинно, и истинна импликация
. В нашем случае , т. е. код практически не имеет избыточности. Видно, что среднее число двоичных символов стремится к энтропии сообщения.
Вторая теорема Шеннона устанавливает принципы помехоустойчивого кодирования. Оказывается, что даже при наличии помех в канале связи всегда можно найти такую систему кодирования, при которой сообщение будет передано с заданной достоверностью. Основная идея всех таких кодов заключается в следующем: для исправления возможных ошибок вместе с основным сообщением нужно передавать какую-то дополнительную информацию. Для реализации контроля возможных ошибок используются так называемые самокорректирующие коды, а по каналу связи вместе с символами основного сообщения передаются ещё дополнительных символов, обеспечивающих избыточность кодирования и позволяющих противодействовать помехам.
1.13. Математические основы информатики
1.13.1. Алгебра высказываний (алгебра логики)
Учение о высказываниях — алгебра высказываний или алгебра логики является простейшей логической теорией. Она рассматривает конечные конфигурации символов и взаимоотношения между ними.
Высказывание — это всякое повествовательное предложение, утверждающее что-либо о чем-либо, при этом непременно истинное или ложное. Логическими значениями высказываний являются "истина" и "ложь", обозначаемые 1 и 0. Высказывания, представляющие собой одно утверждение, называются простыми или элементарными, высказывания, получающиеся из элементарных с помощью грамматических связок "не", "и", "или", "если… , то…", называются сложными. Эти названия не носят абсолютного характера, высказывания, которые в одной ситуации можно считать простыми, в другой ситуации будут сложными. В алгебре логики все высказывания рассматриваются только с точки зрения их логического значения, житейское содержание игнорируется. Каждое высказывание может быть либо истинным, либо ложным, ни одно высказывание не может быть одновременно истинным и ложным. Элементарные высказывания обозначаются строчными буквами латинского алфавита: а, b, с. Из высказываний с помощью логических связок образуются новые высказывания. Рассмотрим наиболее употребительные логические связки.
Отрицанием высказывания называется новое высказывание, которое является истинным, если высказывание ложно, и ложным, если — истинно. Обозначается , читается "не " или "неверно, что ". Все логические значения высказывания
можно описать с помощью табл. 1.13. Если — высказывание, то — противоположное высказывание. Тогда можно образовать , которое называется двойным отрицанием высказывания. Логические значения , очевидно, совпадают со значениями . Эта операция одноместная — в том смысле, что из одного данного простого высказывания строится новое высказывание .
Логическое умножение (конъюнкция). Конъюнкцией двух высказываний и называется новое высказывание , которое истинно только когда оба высказывания и истинны, и ложно, когда хотя бы одно из и ложно. Обозначается или , читается " и ". Таблица истинности конъюнкции дана в табл. 1.14. Из определения операции конъюнкции видно, что союз "и" в алгебре логики употребляется в том же смысле, что и в повседневной речи. Однако в алгебре логики этой связкой можно связывать любые, сколь угодно далекие по смыслу высказывания. Конъюнкцию часто называют логическим умножением.
Таблица 1.13 Таблица 1.14
| | |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
-
1
0
0
1
Логическое сложение (дизъюнкция). Дизъюнкцией двух высказываний и называется новое высказывание, которое считается истинным, если хотя бы одно из высказываний и истинно, и ложным, если они оба ложны. Обозначается , читается " или ". Логические значения дизъюнкции описываются в табл.1.15.
Таблица 1.15 Таблица 1.16
| | |
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
| | |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
Импликация или логическое следование. Импликацией двух высказываний и называется новое высказывание, которое считается ложным, когда истинно, а y ложно, и истинным во всех остальных случаях. Обозначается , читается "если , то " или "из следует ". Высказывание называется условием или посылкой, высказывание — следствием или заключением. Таблица истинности этой операции приведена в табл. 1.16. Из таблицы истинности видно, что если условие — истинно, и истинна импликация