Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 489
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Пример: Имеются данные о количестве отловленных бабочек с периода 2003 по 2005 гг.
Год | Абсолютный уровень | Абсолютный прирост | Темп роста % | Темп прироста % | |
при постоянном основании | при цепном основании | ||||
2003 | 30 | - | 100 | - | - |
2004 | 50 | +20 | 185 | 185 | +85 |
2004 | 60 | +10 | 200 | 120 | +20 |
В качестве недостатка показателей абсолютного прироста можно указать на то, что их значения приводятся в абсолютных именованных числах, а это затрудняет сравнение разных показателей абсолютного прироста.
Показатели абсолютного прироста не могут поэтому ответить на вопрос, в каком из рассматриваемых явлений процесс развития протекает более интенсивно и где он медленнее. Для большей наглядности пользуются показателями темпа роста и темпа прироста. Они позволяют проследить процесс изменения изучаемых явлений, выраженный в относительных величинах. Так как относительные величины не именованные числа, их можно сравнивать между собой.
Довольно часто имеется необходимость в обобщающей характеристике показателей динамики изучаемых явлений. Для этой цели используется целый ряд средних величин, называемых хронологическими, так как они вычисляются из динамических хронологических рядов. Известны так называемые показатели среднего уровня, среднего прироста, среднего темпа роста и среднего темпа прироста.
Показатель среднего уровня дает сведения о среднем размере или объеме изучаемых явлений и служит типичным представителем для всех периодов, представленных в динамическом ряду.
Техника вычисления показателей среднего уровня различна в зависимости от того, из какого динамического ряда будут вычисляться эти показатели - интервального или моментного.
В интервальном статистическом ряду показатель среднего уровня - средняя арифметическая величина, полученная путем усреднения отдельных показателей абсолютного уровня (пример). Показатель среднего уровня обозначается Y (в отличие от X - символа средней величины, вычисленной из вариационного ряда). Y=SY/n. Y - средняя хронологическая.
В моментном статистическом ряду техника вычисления показателя среднего уровня следующая: сначала вычисляют абсолютный уровень изучаемого явления, относящегося к середине каждого из интервалов. Полученные величины усредняют.
Пример: Имеются данные от численности зайцев на 31 декабря каждого года. Требуется найти среднегодовое число зайцев за весь рассматриваемый период.
Год | на 31.12 | на 1.7 |
1990 | 100 | - |
1991 | 90 | 95 |
1992 | 80 | 85 |
1993 | 90 | 85 |
1994 | 100 | 95 |
| | 360 |
Для этого сначала находят средние числа зайцев для каждого календарного года. Затем вычисляют среднюю из найденных величин, являющуюся показателем среднегодового уровня. Оба эти этапа работы по вычислению среднегодового уровня могут быть представлены в виде следующей формулы:
=(100+180+160+180+100)/8=720/8=90, где Yi - показатели абсолютного уровня изучаемого явления к концу каждого из интервалов времени; n - число интервалов.
Приведенная формула для вычисления хронологических средних моментного статистического ряда относится только к равновеликим интервалам времени. В противном случае хронологическую среднюю необходимо вычислять как среднюю взвешенную, где веса - длительность отдельных интервалов.
На практике часто применяют и другой обобщающий показатель, при помощи которого можно получить представление о динамике изучаемого явления. Это показатель среднего темпа роста. При помощи показателя среднего темпа роста получают сведения о средней величине темпа, с которым проходили изменения, отмеченные за определенное время. Показатели темпа роста являются отношением абсолютного уровня текущего периода к абсолютному уровню какого-нибудь другого базисного периода. Для измерения среднего темпа роста необходимо вычислять среднюю геометрическую
, где Y - усредняемые величины, показывающие темп роста в отдельные интервалы времени; n - число этих интервалов, R - произведение.
Год | на 31.12 | темп роста на цепном основании |
1990 | 100 | - |
1991 | 90 | 90 |
1992 | 80 | 88 |
1993 | 90 | 115 |
1994 | 100 | 111.1 |
= =103 %. Приведенный способ вычисления Y затруднителен из-за большого объема вычисли-тельной работы. Поэтому рекомендуется пользоваться логариф-мами чисел темпов роста. Для этого логарифмируют исходную формулу и получают: logYг=logY/n. Развитие изучаемых явлений может быть охарактеризовано изменениями, наступающими в них с течением времени. Изменения в явлениях наступают в результате комбинированного действия многих разнообразных факторов. Их можно разделить на 2 основные группы: длительно действующие и временно действующие. Длительно действующие факторы определяют тенденцию развития, а временно действующие - затушевывают ее и вносят в нее элементы случайности.
Для определения воздействия названных двух групп факторов поступают следующим образом: исходя из известных теоретических предположений о тенденции развития, изолируют влияние временно действующих случайных причин и находят так называемые теоретические величины - Yt. Это те величины изучаемого явления, которые имелись бы в каждом из рассматриваемых интервалов времени, если бы было исключено действие случайно действующих факторов. Так как на фактические величины Y оказывали влияние наряду с длительно действующими факторами и временно действующие, разность фактически наблюдаемых величин и теоретически ожидаемых (Y-Yt) указывает на размер действия временно действующих случайных факторов. Таким образом, при помощи Yt количественно определяют действие длительно действующих, а при посредстве разности (Y-Yt) - действие временно действующих факторов.
Процесс расчета теоретически ожидаемых величин Yt носит название «выравнивание динамических рядов». В целях выравнивания пользуются следующими методами:
-
Графический метод. -
Метод удлинения периодов. -
Метод скользящей средней. -
Метод наименьших квадратов.
Рассмотрим эти способы выравнивания, используя один общий пример. Имеются следующие данные о числе популяции сусликов с 1985 по 1995гг. Требуется выявить тенденцию колебания численности и количественно определить влияние длительно действующих и временно действующих факторов.
Год | Число | Графический метод | | Удлинение периодов | Скользящая средняя |
| | Yt | Y-Yt | | |
1985 | 100 | 120 | -20 | | |
1986 | 110 | 111 | 1 | 105 | 105 |
1987 | 105 | 107 | 2 | | 105 |
1988 | 100 | 103 | 3 | 103 | 100 |
1989 | 95 | 95 | 0 | | 91 |
1990 | 87 | 90 | -3 | 91 | 87 |
1991 | 80 | 85 | -5 | | 82 |
1992 | 80 | 80 | 0 | 80 | 82 |
1993 | 75 | 75 | 0 | | 72 |
1994 | 60 | 70 | -15 | 67 | |