Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 490
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Графический метод. Первоначально на линейной диаграмме изображают графически фактические числа количества сусликов. Получают ломаную линию, изображающую тенденцию изменения их численности. Затем от руки или при помощи линейки, лекала и т. п., следуя фактическим данным, вычерчивают прямую или кривую линию. Эта линия позволяет увидеть общую тенденцию развития. Определяя по этой линии величины соответствующих интервалов, находят теоретически ожидаемые величины Yt. Они характеризуют влияние длительно действующих факторов. Влияние временно действующих факторов можно выразить количественно разностью фактических и теоретически ожидаемых величин.
Преимущество описанного графического метода состоит в том, что его можно применять легко и быстро. Недостаток его в том, что в оценке тенденции развития сказывается некоторый субъективизм того, кто применял этот метод.
Метод удлинения периодов. В целях устранения резких отклонений в величинах динамических рядов в отдельные годы производится объединение, укрупнение периодов. Для объединенных периодов вычисляют средние хронологические величины, которые наносят на линейную диаграмму. Через них проводят линию, график которой дает возможность по ординате получить теоретически ожидаемые величины. Метод удлиненных периодов является попыткой улучшить графический метод выравнивания динамических рядов.
При использовании метода удлинения периодов возникает вопрос о количестве лет, объединяемых вместе. В рассматриваемом примере приняты двухлетние периоды. При определении того, какой должен быть укрупненный период, следует провести анализ изучаемых числовых величин и в соответствии с результатами подобрать наиболее подходящее укрупнение. Следует отметить, что при этом также сказывается субъективная оценка исследователя.
При пользовании методом удлинения периодов теряется часть сведений о теоретически ожидаемых величинах. Например при двухлетнем укрупнении теряются сведения о первом годе. При трехлетнем - о первом и двух последних и т. д.
Метод скользящей средней. При нем тенденция развития представлена последовательной серией сплетающихся средних. Эти средние представляют теоретически ожидаемые величины Yt и вычисляются следующим образом. Например, если приняты трехлетние периоды для усреднения, то первая средняя получается путем усреднения фактических чисел первого, второго и третьего годов, полученная величина будет относиться ко второму году. Вторая средняя получается путем усреднения второго, третьего и четвертого годов, полученная величина будет относиться к третьему году и т. д.
Легко заметить, что при методе скользящей средней теряется часть сведений, так же как при методе удлинения периодов. При определении числа лет для усреднения фактических чисел не малую роль играет и субъективизм исследователя.
Метод наименьших квадратов.
Этот метод преследует ту же цель, что и описанные выше три метода: устранить влияние временно действующих факторов и выявить тенденцию развития, вызванную только действием длительно действующих причин. Тенденцию развития лучше всего можно выразить линией, наиболее близкой к фактическим данным, это достигается методом наименьших квадратов, называемым так потому, что сумма возведенных в квадрат разностей фактических чисел - Y и теоретически ожидаемых - Yt - наименее велика, т.е. (Y-Yt)20. Этому условию в каждом конкретном случае отвечает только одна линия, поэтому метод наименьших квадратов можно считать наиболее объективным способом выявления тенденции развития и рекомендовать его для широкого применения.
Для того, чтобы применить способ наименьших квадратов, следует проделать следующие этапы работы.
Сначала, после соответствующей оценки характера развития и изменений изучаемых явлений, производят выбор подходящего вида и характера линий, наиболее соответствующей тенденции развития. Например, если тенденция развития прямолинейна, то точнее всего ее представить при помощи прямой линии, уравнение которой: Yt=a+bx. Если тенденция криволинейна, вначале восходящая, а затем нисходящая, то ее можно представить в виде параболы второй степени с уравнением: Yt=a+bx+cx2.
На следующем этапе для получения числовых значений параметров a, b, c, d и т.д. составляют систему уравнений. При решении системы уравнений получают конкретные числовые значения параметров. Если в уравнении линии, соответствующей по своему характеру тенденции развития, имеется два неизвестных параметра, применяется система двух уравнений. Например, для прямой Yt=a+bx применяется система двух уравнений, для параболы второй степени система трех уравнений и т.д.
В зависимости от того, сколько параметров имеет линия, выражающая основную тенденцию развития, столько уравнений требуется решить.
На третьем этапе работы после решения системы уравнений и получения конкретных числовых значений параметров, определяющих место соответствующей линии в системе координат, путем ряда последовательных подстановок в уравнения полученных величин X (условно принята нумерация периодов) получают теоретически ожидаемые величины Yt. Истолкование результатов при этом аналогично описанному при других способах выравнивания динамических рядов. Разность фактических наблюдаемых величин - Y и теоретически ожидаемых - Yt указывает количественно влияние временно действующих - случайных причин.
Давайте технику применения метода наименьших квадратов при использовании разных видов линий, выявляющих тенденцию развития, проиллюстрируем следующими примерами.
Прямолинейное выравнивание - несокращенный метод. О многих явлениях, являющихся объектом изучения науки можно сказать, что изменения в них с течением времени протекают прямолинейно, т.е. их развитие можно представить в виде прямой, уравнение которой: Yt=a+bx.
Например, рассмотренный нами пример по праву можно отнести к нисходящим прямолинейным. Это позволяет выразить тенденцию развития популяции в виде прямой. Система уравнений при помощи которых определяются параметры, следующая:
Y=Na+bX
XY=aX+bX2
где Y - фактические числовые величины изучаемого явления за каждый из периодов.
X - условная нумерация периодов. Эта нумерация обычно начинается с нуля и идет в естественном порядке чисел - 0,1,2,3,4, и т.д.
N - численность изучаемых периодов.
Используя приведенные ранее данные, получаем следующее.
Год | Y | X | XY | X2 | Yt=a+bx |
1985 | 100 | 0 | 0 | 0 | 110 |
1986 | 110 | 1 | 110 | 1 | 105.2 |
1987 | 105 | 2 | 210 | 4 | 100.4 |
1988 | 100 | 3 | 300 | 9 | 95.6 |
1989 | 95 | 4 | 380 | 16 | 90.8 |
1990 | 87 | 5 | 435 | 25 | 86 |
1991 | 80 | 6 | 480 | 36 | 81.2 |
1992 | 80 | 7 | 560 | 49 | 76.4 |
1993 | 75 | 8 | 600 | 64 | 71.6 |
1994 | 60 | 9 | 540 | 81 | 66.8 |
| 892 | 45 | 3615 | 285 | 400 |
Для того, чтобы найти параметры a и b, необходимо составить систему двух уравнений.
892=10a+45b
3615=45a+285b
Решая эти уравнения получаем a=110, b=-4.8
Yt=a+bx=110-4.8x
Замещая x в этом уравнении соответствующими числовыми величинами, определяющими порядковый номер изучаемых периодов, получаем выровненные величины - Y, те, которые были бы получены, если бы на популяцию действовали только длительно действующие факторы.
Параметр b обозначает снижение или увеличение теоретически ожидаемых величин в течение одного из периодов и называется коэффициентом регрессии. Наименование это дал Гальтон, изучавший корреляцию роста родителей и их потомства. Так как Гальтон выявил нисходящую тенденцию в изменении роста высоких родителей и их потомства (коэффициент b с отрицательным знаком), то назвал он его коэффициентом регрессии. Это наименование остается за коэффициентом b и тогда, когда он имеет положительное значение.
Прямолинейное выравнивание - сокращенный способ - нечетное количество периодов. В нашем примере, иллюстрировавшим применение метода наименьших квадратов, были использованы абсолютные числа. Гораздо более познавательное значение имеют производные статистические показатели - относительные величины, средние величины и т.п. Например, если вы изучаете действие каких-то веществ на организм, то на абсолютные величины количества, допустим умерших животных, оказывает влияние количество животных, подвергнутых воздействию. Поэтому, в таких случаях удобнее пользоваться относительными величинами, выраженными в процентах.
Давайте разберем применение сокращенного способа выравнивания динамических рядов. Этот способ применяется тогда, когда ряд имеет нечетное количество периодов. Особенность его в том, что за начальный год X=0 принимается не первый год, а центральный. Нумерация остальных годов идет в естественном порядке чисел 1, 2, 3 и т.д., но номера более ранних лет до центрального имеют отрицательный знак, а после него положительный. Вследствие этого упрощается система уравнений:
Y=Na
XY=bX2
отсюда параметры a и b принимают значения (см. по формуле), что освобождает от необходимости решать систему уравнений.
Имеются следующие данные о заболеваемости гриппом за 1986-1994г.
Год | Y | X | XY | X2 | Yt |
1986 | 4,7 | -4 | -18,8 | 16 | 8,22 |
1987 | 29,4 | -3 | -88,2 | 9 | 36,15 |
1988 | 61 | -2 | -122 | 4 | 64,08 |
1989 | 79,1 | -1 | -79,1 | 1 | 92,01 |
1990 | 152,1 | 0 | 0 | 0 | 119,94 |
1991 | 161,3 | 1 | 161,3 | 1 | 147,87 |
1992 | 166,5 | 2 | 333 | 4 | 175,81 |
1993 | 211,8 | 3 | 635,5 | 9 | 203,74 |
1994 | 213,6 | 4 | 854,4 | 16 | 231,68 |
| 1079,5 | 0 | 1676,1 | 60 | 1079,5 |
a=119.94 b=27.93
Прямолинейное выравнивание - сокращенный способ - четное число периодов. Приведенный способ наименьших квадратов при четном числе периодов встречает затруднение из-за отсутствия центрального периода, который можно было бы принять за начальный. В этом случае начальным моментом считают тот, который находится между двумя центральными, так как данные динамического ряда относятся к середине периода. Если мы имеем интервалы в годах, то для того, чтобы работать с целыми числами эти интервалы переводят в полугодовые.
Не всегда можно представить тенденцию развития явлений при помощи прямой, так как тенденция развития в ряде случаев криволинейна и прямая линия не подходит для ее характеристики. В таких случаях пользуются различными кривыми: параболами, гиперболами, экспоненциальными и т.д.
Парабола - одна из элементарных кривых. Параболой первой степени является прямая линия. Парабола второй степени имеет следующее уравнение: Yt=a+bx+cx2
а параболы третьей степени: Yt=a+bx+cx2+dx3.
Для решения этих уравнений надо найти значения a, b, c, d и т.д. Для этого надо решить соответствующую систему уравнений:
Y=Na+bX+cX2
XY=aX+bX2+cX3
X2Y=aX2+bX3+cX4
Техника решения подобных уравнений и построения графика принципиально ничем не отличается от разобранных ранее примеров. Аналогично можно применять сокращенные способы для четного количества периодов и нечетного количества периодов.
В случаях, когда количество интервалов велико можно прибегать к сглаживанию по трем, пяти, семи, девяти и т.д. точкам.
Например, сглаживание по 5 точкам выглядит так:
Yt=Xn-2+2Xn-1+3Xn+2Xn+1+Xn+2
по 9 точкам:
Yt=Xn-4+2Xn-3+3Xn-2+4Xn-1+5Xn+4Xn+1+3Xn+2+2Xn+3+Xn+4
Следует отметить, что данный метод можно применять не зная какие факторы оказывают длительное, а какие временное воздействие. Однако, можно заметить, что при таком способе сглаживания теряются начальные и конечные периоды.
Анализ циклических изменений
Многим явлениям свойственна цикличность. Она выражается в периодических изменениях интенсивности этих явлений, причем изменения эти обладают более или менее стабильным характером. Так, например, общеизвестны различия таких физиологических показателей, как пульс и артериальное давление крови, в различное время суток. Такого же рода суточная цикличность наблюдается и при некоторых антропометрических показателях: рост, вес.