Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 484
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Например: имеется неупорядоченная выборка, данные которой необходимо проранжировать. {2, 7, 6, 8, 11, 15, 9}. После упорядочивания выборки ранжируем ее.
Метрические данные | Ранги | Альтернативный вариант: | Метрические данные | Ранги |
15 | 1 | | 15 | 7 |
11 | 2 | | 11 | 6 |
9 | 3 | | 9 | 5 |
8 | 4 | | 8 | 4 |
7 | 5 | | 7 | 3 |
6 | 6 | | 6 | 2 |
2 | 7 | | 2 | 1 |
Отдельно следует сказать следующее. Существует группа редко используемых непараметрических критериев (Т-критерий Вилкоксона, U-критерий Манна-Уитни, Q-критерий Розенбаума и др.), при работе с которыми всегда надо меньшему значению приписывать меньший ранг.
Правило связанных рангов. Объектам с одинаковой выраженностью свойств приписывается один и тот же ранг. Этот ранг представляет собой среднее значение тех рангов, которые они получили бы, если бы не были равны. Например, надо проранжировать выборку, содержащую ряд одинаковых метрических данных: {4, 5, 9, 2, 6, 5, 9, 7, 5, 12}. После упорядочивания выборки следует вычислить среднее арифметическое значение связанных рангов.
-
Метрические данные
Предварительное ранжирование
Окончательное ранжирование
12
1
1
9
2
(2+3)/2=2,5
9
3
(2+3)/2=2,5
7
4
4
6
5
5
5
6
(6+7+8)/3=7
5
7
(6+7+8)/3=7
5
8
(6+7+8)/3=7
4
9
4
2
10
2
Рассмотренная классификация признаков по шкалам измерений не исчерпывает всех мыслимых типов классификаций. Так, для применения статистических методов, оперирующих частотами распределений, более существенной может оказаться классификация по такому критерию, как непрерывность теоретической функции эмпирического распределения. Для других методов определяющим является решение вопроса о том, какому теоретическому типу распределения соответствует эмпирическое распределение либо, в более узком смысле, является ли распределение нормальным. Если же различать условия исследования того или иного явления, признаки могут подразделяться на факториальные признаки (причина) и результативные признаки (следствие). Успех применения любого метода зависит от того, насколько хорошо анализируемые данные соответствуют основным предположениям, принятым при разработке статистического метода. Методы анализа, разработанные для определенного типа признаков, могут привести к совершенно неверным выводам при их применении к признакам другого типа, поэтому нужно быть особенно внимательным при выборе метода, адекватного анализируемым данным. Тип исходных данных определяет, какими методами эти данные могут быть обработаны. Формулы нельзя применять слепо и автоматически, без рассмотрения вопроса об их пригодности в каждом данном случае.
ПОКАЗАТЕЛЬ - одно из основных понятий статистики, под которым имеется в виду обобщенная количественная характеристика явлений и процессов в их качественной определенности в условиях конкретного места и времени. Примерами конкретных показателей служат: численность населения, плодородие почв, уровень производительности труда и др.
Величина показателя определяется в результате измерения объектов (элементов) и меняется в зависимости от методологических особенностей его построения обусловленных, в свою очередь степенью охвата изучаемых процессов.
Показатели называются натуральными, когда они выражены в единицах счета или в различных физических единицах измерения (в мерах линейных, площади, объема, массы и др.), и денежными, или стоимостными, когда они представляют собой денежную оценку экономических объектов.
ВАРИАЦИЯ - различия в значениях того или иного признака у отдельных единиц, входящих в данную статистическую совокупность. Например, студенты учебной группы различаются по успеваемости, затратам времени на подготовку к занятиям, любимым занятиям в свободное время, росту, полу и т. д. Для изучения вариации используют ряды распределения и показатели размеров вариации. Изучение вариации позволяет судить об исходных данных с точки зрения их однородности. Чем больше вариация, больше различия между единицами, тем более неоднородны исходные данные.
Способы группировки первичных данных.
Зафиксированные в документах учета сведения об изучаемом объекте (или объектах) представляют тот фактический материал, который нуждается в соответствующей обработке. Обработка начинается с упорядочения или систематизации собранных данных. Процесс систематизации результатов массовых наблюдений, объединения их в относительно однородные группы по некоторому признаку называется группировкой.
Группировка - это не просто технический прием, позволяющий представить первичные данные в комплексном виде, но и осмысленное действие, направленное на выявление связи между явлениями. Один и тот же материал дает совершенно противоположные выводы при разных приемах группировки. Нельзя группировать в одну и ту же совокупность неоднородные по составу данные, необдуманно выбирать способ группировки. Группировка должна отвечать требованию задачи и соответствовать содержанию изучаемого явления.
Таблицы. Наиболее распространенной формой группировки являются статистические таблицы; они бывают простыми и сложными. К простым относятся, например, четырехпольные таблица, применяемые при альтернативной группировке, когда одна группа переменных противопоставляется другой; например, здоровые - больным, высокие - низким и т.д.
Школьные классы | Детей | | Всего |
| Здоровых | Больных | |
Третьи и четвертые | 63 | 92 | 155 |
Пятые и шестые | 71 | 39 | 110 |
Всего | 134 | 131 | 265 |
К сложным относятся многопольные таблицы, применяемые при изучении корреляционной зависимости и при выяснении причинно-следственных отношений между варьирующими признаками. Примером корреляционной таблицы служат данные, показывающие наличие положительной зависимости между ростом родителей и ростом их детей.
В качестве примера группировки, применяемых при выяснении причинно-следственных отношений между признаками, можно привести следующую зависимость:
Биотопы | 1993 | 1994 | 1995 | Среднее |
лес | 10 | 15 | 12 | 12 |
поле | 100 | 200 | 150 | 150 |
дом | 35 | 35 | 35 | 35 |
Из примеров видно, что статистические таблицы имеют не только иллюстративное, но и аналитическое значение, позволяющее обнаруживать связи между варьирующими признаками.
Статистические ряды. Особую форму группировки представляют так называемые статистические ряды. Статистическим называется ряд числовых значений признака расположенных в определенном порядке. В зависимости от того, какие признаки изучаются, статистические ряды делят на атрибутивные, вариационные, ряды динамики и регрессии, а также ряды ранжированнных значений признаков и ряды накопленных частот, являющихся производными вариационных рядов. Примером атрибутивного ряда могут служить данные, показывающие зависимость между содержанием гемоглобина в крови и высотой организации позвоночных животных.
Класс животных | Рыбы | Амфибии | Рептилии | Птицы | Млекопитающие |
Кол-во Hb (г/кг массы) | 1.6 | 2.9 | 3.8 | 11.2 | 11.7 |
Среди группировок видное место занимают вариационные ряды. На их описании следует остановиться более подробно. Ряды регрессии, динамики и другие мы разберем на следующих лекциях.
Вариационным рядом или рядом распределения называют двойной ряд чисел, показывающий, каким образом числовые значения признака связаны с их повторяемостью в данной статистической совокупности. Например, из урожая картофеля, собранного на огороде, случайным образом отобрано 10 клубней, в которых подсчитывали число глазков. Результаты подсчета оказались следующие: 6, 9, 5, 7, 10, 8, 9, 10, 8, 11. Чтобы разобраться в этих данных, расположим их в ряд (в порядке регистрации результатов наблюдений) с учетом повторяемости вариант в совокупности.
Варианты (х) | 6 | 9 | 5 | 7 | 10 | 8 | 11 |
Число вариант (f) | 1 | 2 | 1 | 1 | 2 | 2 | 1 |
Это и есть вариационный ряд. Числа, показывающие, сколько раз отдельные варианты встречаются в данной совокупности называются частотами или весами вариант и обозначаются строчной буквой латинского алфавита f. Общая сумма частот вариационного ряда равна объему данной совокупности.
Частоты (веса) выражают не только абсолютными, но и относительными числами - в долях единицы или в процентах от общей численности вариант, составляющих данную совокупность. В таких случаях веса называют относительными частотами или частостями.
Распределение исходных данных в вариационный ряд преследует определенные цели. Одна из них ускорение работы при вычислении по вариационному ряду обобщающих числовых характеристик - средней величины и показателей вариации. Другая сводится к выявлению закономерности варьирования учитываемого признака. Приведенный ряд удовлетворяет первой, но не удовлетворяет достижению второй цели. Чтобы ряд распределения полностью удовлетворял предъявляемым к нему требованиям, его нужно строить по ранжированным значениям признака.
Под ранжированием понимают расположение членов ряда в возрастающем (или убывающем) порядке. Так, в данном случае результаты наблюдений следует расположить так:
Варианты (х) | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Число вариант (f) | 1 | 1 | 1 | 2 | 2 | 2 | 1 |
В зависимости от того, как варьирует признак - дискретно или непрерывно, в широком или узком диапазоне, - статистическая совокупность распределяется в безынтервальный или интервальный вариационные ряды. В первом случае частоты относятся непосредственно к ранжированным значениям признака, которые приобретают положение отдельных групп или классов вариационного ряда, во втором - подсчитывают частоты, относящиеся к отдельным промежуткам или интервалам (от - до), на которые разбивается общая вариация признака в пределах от минимальной до максимальной варианты данной совокупности. Эти промежутки могут быть равными и не равными по ширине. Отсюда различают равно- и неравноинтервальные вариационные ряды. Примером неравноинтервального ряда могут служить данные показывающие зависимость между числом стай каких-то птиц и количеством особей в стае в гнездовой и послегнездовой период.