Файл: 1. Микробиология.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.01.2024

Просмотров: 446

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Кисломолочные продукты

Обязательная и посторонняя микрофлора кисломолочных продуктов

1. МОРФОЛОГИЯ БАКТЕРИЙ

 Классификация дрожжей

2.  Влияние факторов внешней среды на микроорганизмы

3. Микрофлора молока

2. Пищевые сальмонеллезы

1. Влияние биологических факторов на микроорганизмы.

2. патогенные микроорганизмы Товароведу-пищевику и технологу общественного питания В: работе приходится «встречаться» с микроорганизмами не только как с возбудителями порчи пищевых продуктов. Продукты, инфицированные некоторыми микробами, могут оказаться причиной тяжелых заболеваний. Знание свойств микробов, вызывающих эти заболевания, путей попадания их на продукты и условий возможного размножения на них необходимо для профилактики заболеваний."* Микроорганизмы, способные вызывать заболевания людей, животных и растений, получили название патогенных или болезнетворных.Патогенность микробов, т. е. их потенциальная способность при соответствующих условиях оказывать болезнетворное действие на микроорганизмы, может проявляться в разной степени. Степень патогенности микроорганизма принято называть его вирулентностью. Вирулентность микробов может усиливаться или ослабевать как в естественных, так и в экспериментальных условиях.С

3. Микробиология мяса птицы

2. Молочнокислое брожение

Типы молочнокислого брожения

Возбудители молочнокислого брожения

Важнейшие представители типичных молочнокислых бактерий и их использование

Важнейшие представители нетипичных молочнокислых бактерий и их использование

3. Пропионовокислое брожение

1. Дрожжи Общая характеристика

21. Уксуснокислое брожение, его возбудители и промышленное использование.

22. Спиртовое и глицериновое брожение: химизм, возбудители, использование в отраслях пищевой промышленности.

2. Окислительные процессы

Уксуснокислое брожение

Лимоннокислое брожение

3. Микробиологические основы современных способов хранения продуктов

Важнейшие биохимические процессы, вызываемые микроорганизмами, их практическое значение Анаэробные процессы Спиртовое брожение.

1. Бактериофаги. Строение, свойства, размножение, использование.

Аэробная биологическая очистка.



1.Пастер. В возрасте 36 лет он защитил докторскую диссертацию, представив две работы: по химии и физике кристаллов. Основными открытиями Пастера являются: ферментативная природа молочно-кислого (1857), спиртового (1860) и масляно-кислого (1861) брожения, изучение болезней вина и пива (с 1857 г.), опровержение гипотезы самопроизвольного зарождения (1860, премия Французской Академии наук), исследование болезней шелковичных червей—пебрина (1865), основы представлений об искусственном иммунитете (на примере куриной холеры, 1880), создание вакцины против Сибирской язвы (1881) путем искусственного изменения вирулентности микроорганизмов, создание антирабической вакцины (1885).

Открытия Пастера явились основой для развития медицинской микробиологии и борьбы с инфекционными заболеваниями. В 1885 г. Пастер организовал в Париже первую в мире антирабическую станцию. Вторая антирабическая станция была создана И. И. Мечниковым в Одессе в 1886 г. Затем бактериологические станции стали организовываться в Петербурге, Москве, Варшаве, Самаре и других городах России раньше, чем в других странах.

Организатором первой в России Пастеровской станции по борьбе с бешенством и другими инфекционными заболеваниями был Илья Ильич Мечников (1845—1916)—выдающийся русский биолог, патолог, иммунолог и бактериолог, создатель фагоцитарной теории иммунитета, один из основоположников эволюционной эмбриологии.

Изучая процессы внутриклеточного пищеварения, И. И. Мечников открыл, что мезодермальные клетки (лейкоциты, клетки селезенки, костного мозга и др., которые он назвал фагоцитами) выполняют функцию защиты организма от болезнетворных микроорганизмов. Первый доклад о фагоцитарной теории «О защитных силах организма» И. И. Мечников сделал на VII съезде русских естествоиспытателей и врачей в Одессе в 1883 г. Его теория явилась основой для понимания сущности процесса воспаления.

И. И. Мечников создал крупнейшую школу российских микробиологов, иммунологов и патологов. Среди них Г. Н. Габричевский, который в 1892 г. начал читать курс микробиологии в Московском университете и организовал в Москве производство противодифтерийной сыворотки

Большое значение для развития медицинской микробиологии имели открытия немецкого ученого Роберта Коха (Koch, Robert, 1843—1910, рис. 125) — основоположника бактериологии, лауреата Нобелевской премии 1905 г. Кох установил правило, которое получило название триады Ген-ле—Коха: для доказательства этиологической роли микроорганизма в возникновении данной заразной болезни необходимо: 1) обнаруживать данный микроб в каждом случае данного заболевания (причем при других болезнях или у здорового человека он не должен встречаться); 2) выделить его из тела больного в чистой культуре; 3) вызвать такое же заболевание у подопытного животного, заразив его чистой культурой этого микроба. Кох первым предложил метод выращивания чистых бактериальных культур на плотных питательных средах (1877), окончательно установил этиологию Сибирской язвы (1876), открыл возбудителей туберкулеза (1882) и холеры (1883).


Успехи микробиологии по изучению возбудителей инфекционных . заболеваний сделали возможной их успешную специфическую профилактику.

2. Ботулизм.

Он относится к наиболее тяжелым пищевым отравлениями. Ботулизм возникает при употреблении пищи, содержащей токсины ботулиновой палочки. В настоящее время хорошо изучены причины возникновения ботулизма, а также разработаны и осуществляются меры по борьбе с этим заболеванием. В результате широко проводимых профилактических мероприятий заболеваемость ботулизмом резко снизилась.

Возбудитель ботулизма широко распространен в природе; обитает он в кишечнике теплокровных животных, рыб, человека, грызунов, птиц, кошек, в почве, в иле водоемов и др. Cl. botulum — спороносная палочка, являющаяся строгим анаэробом. Различают шесть типов ботулиновой палочки (А, В, С, D, Е, F). В СССР наиболее распространены варианты А, В, Е. Наиболее токсичным является тип А. Токсины каждого типа нейтрализуются только соответствующей антитоксической сывороткой. Споры ботулиновой палочки обладают исключительно высокой устойчивостью к воздействию различных факторов внешней среды. Полное разрушение спор отмечено при температуре 100°С в течение 5—6 ч, при температуре 105°С—в течение 2 ч, при температуре 120°С споры погибают через 10—20 мин. Споры ботулиновой палочки отличаются высокой устойчивостью к низким температурам и различным химическим агентам. Они сохраняют жизнеспособность свыше года в холодильных камерах при температуре— 16°С, хорошо переносят высушивание, оставаясь жизнеспособными около года.

Задерживают прорастание спор высокие концентрации поваренной соли (8%) и сахара (55%). Возбудитель ботулизма чувствителен к кислой среде; его развитие задерживается при рН 4,5 и ниже. Это свойство палочки широко используется в производстве консервов, так как в условиях кислой среды ботулиновая бактерия не выделяет токсина.

Оптимальные условия развития и токсинообразования ботулиновой палочки создаются при температуре 25— 30°С. Однако образование токсина достаточно интенсивно происходит и при температуре 37°С. При более низких температурах (15—20°С) размножение микроба и токсинообразование протекают медленнее и полностью прекращаются при температуре 4°С (исключение составляет ботулинус типа В, который выделяет токсин). Токсин — возбудитель ботулизма по токсическому действию на организм является самым сильным из всех известных бактериальных токсинов; смертельная доза для человека — сотые доли миллиграмма на 1 кг массы тела. В кислой среде токсин устойчив, а в слабощелочной (рН 8,0) теряет активность на 90%. Длительное хранение токсина в замороженном состоянии не снижает его активности. При температуре — 79°С он сохраняет активность в течение 2 мес. Поваренная соль даже при высокой концентрации не вызывает инактивации токсина. Токсинообразование задерживается только при содержании NaСl в пищевом продукте в количестве 11% (Ф. М. Белоусская).



Следовательно, если в пищевом продукте уже накопился токсин, то консервирование продукта — соление, замораживание, маринование — не инактивирует его.

Устойчивость токсина к воздействию высоких температур сравнительно невысока: при кипячении он разрушается в течение 15 мин, при нагревании до 80°С—через 30 мин и до 58°С — в течение 3 ч. Поэтому высокая температура является одним из важнейших способов борьбы с ботулизмом. Обычно токсин инактивируется при кипячении кусков мяса, рыбы и других изделий в течение 50—60 мин.

Возбудитель ботулизма способен при благоприятных условиях к размножению и токсинообразованию в любых продуктах и животного, и растительного происхождения. При этом установлено, что наиболее частой причиной ботулизма являются консервированные продукты. Обычно при развитии микробов органолептические свойства продукта заметно не изменяются, иногда лишь ощущается слабый запах прогорклого жира, значительно реже продукт размягчается и изменяется его цвет. В консервах в результате развития микробов и гидролиза белковых и других веществ могут накапливаться газы, вызывающие стойкое вздутие донышка банки (бомбаж).

В последние годы значительно участились случаи ботулизма, вызванного употреблением консервированных продуктов домашнего изготовления. Наибольшую опасность при этом представляют грибы и овощи с низкой кислотностью в закатанных банках. Встречаются случаи заболевания в результате употребления мясных консервов, окороков, ветчины, а также рыбы соленой, вяленой домашнего изготовления. Связано это с тем, что режим обработки консервов в домашних условиях не обеспечивает гибель спор ботулиновой палочки.

Ботулизм — крайне тяжелое заболевание, характеризуется высокой летальностью (60—70%). Инкубационный период 12—24 ч, реже—несколько дней, а в отдельных случаях он может сокращаться до 2 ч.

Первыми признаками болезни являются недомогание, слабость, головная боль, головокружение и нередко рвота. Затем появляются симптомы расстройства зрения (ослабление зрения, двоение в глазах, дрожание глазных яблок, опущение век). Голос становится слабым, глотание и жевание затруднены. Продолжительность болезни различна, в среднем — от 4 до 8 дней, иногда до месяца и более.

Высокоэффективным лечебным средством служит противоботулиновая сыворотка, своевременное введение которой предупреждает смертельный исход

Есть продукты, в которых ботулотоксин встречается довольно часто и к ним нужно быть особо осторожным:


огурцы

фаршированный перец

икра из баклажанов

черемша

абрикосовый компот

джемы, варенья

ягодные, фруктовые пюре

грибы

рыба, мясо

продукты, хранящиеся при помощи растительного масла без подкисления

любые продукты, не подлежащие термической обработке
3. Рыба по своему химическому составу стоит близко к мясу убойных животных, она менее стойка в хранении, чем мясо млекопитающих. Объясняется это тем, что свежая рыба хранится обычно в неразделанном виде, и, помимо микроорганизмов, находящихся в слизи, покрывающей тело рыбы, в пищеварительных органах и жабрах ее находится большое количество различных микроорганизмов. При жизни рыбы эти микробы не проявляют активности, но после ее смерти они начинают вести разрушительную деятельность и вызывают порчу рыбы.

Микрофлора рыбы очень разнообразна. На поверхности рыбы чаще всего встречаются кокковые формы бактерий, сарцины, палочковидные бактерии из родов ахромобактер и псевдомонас, протей, кишечная палочка, актиномицеты, некоторые грибы и дрожжи.

В кишечнике рыбы обитают различные гнилостные бактерии, прежде всего анаэробные бактерии спорогенес и путрификус; возможно также присутствие патогенных бактерий - возбудителей пищевых отравлений.

Порча рыбы начинается в местах наибольшего скопления микроорганизмов - на покрытой слизью поверхности тела, в жабрах и кишечнике, где имеются благоприятные условия для их размножения и развития.

Постепенно появляющиеся признаки порчи рыбы: 1. Красивый, ярко-красный цвет жабр (о возможных отклонениях см. выше) пропадает, приобретая коричневый, серый и зеленый оттенки. Жабры покрываются слизью, и от них идет неприятный запах. Цвет жабр у рыб, уснувших в воде, с самого начала довольно светлый. 2. Запах рыбы становится все сильнее и неприятнее. 3. Глаза рыбы делаются мутными и запавшими, серого цвета. Степень мутности глаз показывает стадию порчи рыбы. 4. Упругость мяса рыбы постепенно пропадает. При надавливании на него остается медленно исчезающий след. Мясо отделяется от позвоночника. 5. Яркая окраска блекнет, особенно у озерной рыбы. 6. Слизистый слой разбухает, собирается в комки и становится липким. 7. Пропадает естественный цвет стенок брюшной полости, внутренности дурно пахнут, чешуя легко отделяется. Мясо в области позвоночника может стать красноватым.

Слизь, покрывающая тело рыбы, богата белковыми веществами и легко подвергается гниению. Жабры также являются прекрасной средой для развития микробов, так как они пронизаны густой сетью кровеносных сосудов и поддаются быстрому воздействию микроорганизмов. Поэтому на практике начало порчи рыбы часто определяют по цвету и запаху жабер.


Гнилостные процессы в рыбе могут начаться также и с кишечника, вследствие чего иногда рыба, свежая на вид, при вскрытии издает гнилостный запах.

Мышечная ткань свежевыловленной рыбы считается стерильной, однако развивающиеся в снулой рыбе микробы проникают в толщу этой ткани и вызывают ее разложение.

Особенности строения мышечной ткани рыбы также способствуют более быстрой порче рыбы по сравнению с мясом теплокровных животных.

Рыбу даже в охлажденном состоянии удается сохранить лишь недолгое время. Длительное хранение ее возможно только в замороженном виде или подвергнутой другим способам консервирования, например, посолу, маринованию или копчению.

Микрофлора морской воды представлена психрофильными, галофильными, барофильными видами бактерий - Pseudomonas, Flavobacterium, Micrococcus, Vibrio и др. Некоторые виды окисляют различные вещества и при этом часть энергии выделяется в виде света. Бактерии родов Vibrio, Aeromonas содержат фермент люциферазу. Механизм свечения сводится к тому, что при переносе водорода от окисляемого субстрата на кислород он попадает на специфический для светящихся бактерий альдегид - люциферин. При передаче электронов водорода с люциферина на кислород и происходит выделение части энергии в виде света. Этот процесс осуществляется при участии фермента люциферазы. Свечение возможно только в присутствии кислорода воздуха. Светящиеся бактерии - это морские сапрофитные организмы, галофилы. Развиваются на свежей рыбе при низких температурах (до 4-6°С). Это Грам-, подвижные, неспорообразующие палочки, близкие к роду Pseudomonas, a также кокки, вибрионы. Факультативные анаэробы в анаэробных условиях осуществляют брожение с образованием муравьиной, молочной и других кислот, спиртов и С02. При этом теряют способность к свечению.

Количественный и видовой состав естественной микрофлоры живой рыбы зависит от условий обитания, т. е. микробного населения толщи воды и донного ила, сезона и способа лова. Поверхность рыб покрыта слизью (глюкопротеид - муцин, аминокислоты и пр.). В слизи присутствуют в основном Грам-отрицательные палочки типа Pseudomonas, а также Грам-положительные микрококки. При t воды 4-8°С - преобладают Pseudomonas, при t = 14-25° - микрококки. Спорообразующие аэробные, анаэробные, патогенные, бактерии кишечной группы для поверхностной микрофлоры нехарактерны, а иногда практически отсутствуют.