Файл: Биология_экзамен.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 23.04.2024

Просмотров: 524

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Цитология. Размножение организмов. Онтогенез

Особенности строения генов у прокариотических и эукариотических клеток

Экспрессия (проявление действия) гена в процессе синтеза белк

Инициация – начало синтеза и-рнк.

Элонгация –

Терминация –

2. Процессинг

3. Трансляция

Инициация

Элонгация

Терминация

14) Митоз, его биологическое значение. Эндомитоз, политения

15) Размножение - основное свойство живого. Бесполое и половое размножение, их отличия. Классификация форм размножения. Партеногенез.

16) Мейоз. Особенности первого и второго деления мейоза. Биологическое значение.

17) Оогенез, определение, схема. Цитологическая и цитогенетическая характеристика.

18) Сперматогенез, схема. Цитологическая и цитогенетическая характеристика

19) Морфофункциональные и генетические особенности половых клеток. Оплодотворение, его биологическая сущность.

20) Общая характеристика эмбрионального развития: зигота, дробление, гаструляция, гисто- и органогенез.

21) Механизмы регуляции развития на разных этапах онтогенеза. Эмбриональная индукция. Примеры.

22) . Механизмы регуляции эмбриогенеза. Гипотеза дифференциальной активности генов.

23) Постэмбриональное развитие: периодизация; закономерности роста и формирования; влияние внешних и внутренних факторов.

24) Биологические аспекты старения. Теории старения. Основные направления борьбы с преждевременной старостью

25) Продолжительность жизни человека. Влияние биологических, природно-климатических и социальных факторов на продолжительность жизни.

26) Смерть как заключительный этап онтогенеза. Клиническая и биологическая смерть. Реанимация.

27) Регенерация как свойство живого к самообновлению. Классификация регенерации, значение для биологии и медицины

28) Репаративная регенерация. Проявление регенерационной способности в фило- и онтогенезе

Факторы, определяющие репаративные способности разных видов

29) Формы репаративной регенерации. Способы ее осуществления. Примеры.

30) Механизмы регуляции регенерации. Методы стимуляции репаративной регенерации.

32) Биоритмы. Медицинское значение хронобиологии. Биологические ритмы

Адаптивные биоритмы

Генетика

Функциональная классификация генов

Критические периоды эмбриогенеза

Генеалогический метод

Признаки, характерные для родословной при аутосомно-доминантном типе наследования

1. Исследование кариотипа.

Классификация мутаций

Эволюционное учение

Экология

5. Ответные реакции организма на действие факторов среды носят индивидуальный, половой и возрастной характер.

Функциональная структура экосистемы:Абиотические факторы среды.

Границы биосферы

Паразитология

Адаптации к паразитизму

Природная очаговость нетрансмиссивных болезней

Профилактика паразитарных заболеваний

Профилактические мероприятия, направленные на источник инвазии:

Профилактические мероприятия, направленные на второе звено эпидемического процесса – механизм передачи возбудителя

Повышение невосприимчивости населения к возбудителям заболеваний

Общие принципы борьбы с природно-очаговыми заболеваниями

D + D = D.

Аллельное исключение – такое взаимодействие, при котором в разных клетках одного и того же организма фенотипически проявляются разные аллельные гены. В результате возникает мозаицизм.

Классический пример – аллельные гены в Х-хромосоме женского организма. В норме из двух этих хромосом функционирует только одна. Другая находится в плотном спирализованном состоянии (инактивированном) и называется «тельце Барра». При образовании зиготы 1 хромосома наследуется от отца, другая – от матери, инактивированной может быть любая из них.

  1. Множественный аллелизм. Примеры. Механизм возникновения.

Множественный аллелизм – наличие в генофонде популяций более двух аллельных генов.

Пример в природе – окраска шерсти у кроликов.

Обозначим Aген, определяющий черную окраску (дикий тип);

ach – ген шиншилловой окраски;

ah – ген гималайской окраски (белая, но кончики хвоста, ушей и пр.

- черные);

a – ген белой окраски.

Все эти 4 гена – аллельные. Характер их взаимодействия:

A > ach > ah > a.

Т.е., А доминантен по отношению ко всем остальным; аch рецессивен по отношению к А, но доминантен по отношению к аh и а; и т.д.

( Конечно, у каждой особи может быть только 2 аллеля!)

Вернемся к наследованию групп крови. Существует 3 аллельных гена: IA, IB, IO.

Группа 0 (I) – генотип: I0 I0 , нет антигенов;

А (II) : IA I0 (гетерозиготы), IA IA (гомозиготы), антиген А;

B (III) : IB I0 , IB IB , антиген B;

AB (IY) : IA IB , и антиген А, и антиген B – фенотипически проявляется действие обоих аллельных генов.

  1. Наследование групп крови и резус-фактора у человека. Резус-конфликт,

Кодоминирование – проявление в гетерозиготном состоянии признаков, кодируемых обоими аллельными генами. Примеры: наследование у человека IV группы крови (AB). В то же время группы крови являются примером множественного аллелизма.

Множественный аллелизм – наличие в генофонде популяции более двух аллельных генов.


Группы крови человека по системе АВО кодируются тремя аллельными генами: IA, IB, I0.

Группа крови Генотип

0 (I) I0 I0

А (II) IA I0, IA IA ;

B (III) IB I0, IB IB;

AB (IV) IA IB (фенотипически проявляется действие обоих аллельных генов – явление кодоминирования).

Группа крови

На эритроцитах имеются специальные белки - антигены групп крови. В плазме к этим антигенам имеются антитела. При встрече одноименных антигена и антитела происходит их взаимодействие и склеивание эритроцитов в монетные столбики. В таком виде они не могут переносить кислород. Поэтому в крови одного человека не встречаются одноименные антиген и антитело. Их комбинация - группа крови. Ее надо учитывать при переливании крови, т.е. переливать только одногруппную кровь, чтобы избежать склеивания. Антигены и антитела групп крови, как все белки организма, наследуются - именно белки, а не сами группы крови, поэтому комбинация этих белков у детей может отличаться от комбинации у родителей и получаться другая группа крови. Существует множество антигенов на эритроцитах и множество систем групп крови. В рутинной диагностике пользуются определением группы крови по системе АВ0.

Антигены: А, В; антитела: альфа, бета.

Наследование: ген IA кодирует синтез белка А, IB - белка В, i не кодирует синтез белков.

Группа крови I (0). Генотип ii. Отсутствие антигенов на эритроцитах, присутствие обоих антител в плазме

Группа крови II (А). Генотип IA\IA или IА\i. Антиген А на эритроцитах, антитело бета в плазме

Группа крови III (В). Генотип IB\IB или IВ\i. Антиген В на эритроцитах, антитело альфа в плазме

Группа крови IV (АВ). Генотип IA\IB. Оба антигена на эритроцитах, отсутствие антител в плазме.

Наследование:

У родителей с первой группой крови может родиться ребенок только с первой группой.

У родителей со второй - ребенок с первой или второй.

У родителей с третьей - ребенок с первой или третьей.

У родителей с первой и второй - ребенок с первой или второй.

У родителей с первой и третьей - ребенок с первой или третьей.

У родителей с второй и третьей - ребенок с любой группой крови.

У родителей с первой и четвертой - ребенок с второй и третьей.


У родителей с второй и четвертой - ребенок с второй, третьей и четвертой

У родителей с третьей и четвертой - ребенок с второй, третьей и четвертой.

У родителей с четвертой - ребенок с второй, третьей и четвертой.

Если у одного из родителей первая группа крови, у ребенка не может быть четвертой. И наоборот -если у одного из родителей четвертая, у ребенка не может быть первой.

Групповая несовместимость:

При беременности может возникнуть не только резус-конфликт, но и конфликт по группам крови. Если плод имеет антиген, которого нет у матери, она может вырабатывать против него антитела: антиА, антиВ. Конфликт может возникнуть если плод имеет II группу крови, а мать I или III; плод III, а мать I или II; плод IV, а мать любую другую. Нужно проверять наличие групповых антител во всех парах, где у мужчины и женщины разные группы крови, за исключением случаев, когда у мужчины первая группа.

Резус-фактор

Белок на мембране эритроцитов. Присутствует у 85% людей - резус-положительных. Остальные15% - резус-отрицательны.

Наследование: R- ген резус-фактора. r - отсутствие резус фактора.

Родители резус-положительны (RR, Rr) - ребенок может быть резус-положительным (RR, Rr) илирезус-отрицательным (rr).

Один родитель резус-положительный (RR, Rr), другой резус-отрицательный (rr) - ребенок может быть резус-положительным (Rr) или резус-отрицательным (rr).

Родители резус-отрицательны, ребенок может быть только резус-отрицательным.

Резус-фактор, как и группу крови, необходимо учитывать при переливании крови. При попадании резус фактора в кровь резус-отрицательного человека, к нему образуются антирезусные антитела, которые склеивают резус-положительные эритроциты в монетные столбики

Резус-конфликт

Может возникнуть при беременности резус-отрицательной женщины резус-положительным плодом (резус-фактор от отца). При попадании эритроцитов плода в кровоток матери, против резус-фактора у нее образуются антирезусные антитела. В норме кровоток матери и плода смешивается только во время родов, поэтому теоретически возможным резус-конфликт считается во вторую и последующие беременности резус-положительным плодом. Практически в современных условиях часто происходит повышение проницаемости сосудов плаценты, различные патологии беременности, приводящие к попаданию эритроцитов плода в кровь матери и во время первой беременности. Поэтому антирезусные антитела необходимо определять при любой беременности у резус-отрицательной женщины начиная с 8 недель (время образования резус-фактора у плода). Для предотвращения их образования во время родов, в течение 72 часов после любого окончания беременности срока более 8 недель вводят антирезусный иммуноглобулин.


  1. Комплементарное взаимодействие неаллельных генов. Примеры.

Комплементарным называется взаимодействие, при котором действие одного гена дополняется действием другого, неаллельного ему, в результате чего формируется качественно новый признак.

Классический пример такого взаимодействия – наследование формы гребня у кур. Встречаются следующие формы гребня: листовидный – результат взаимодействия двух рецессивных неаллельных генов ab ; ореховидный – результат взаимодействия двух доминантных неаллельных генов AB; розовидный и гороховидный – c генотипами A и B, соответственно.

Другой пример – наследование окраски шерсти у мышей. Окраска бывает серая, белая и черная, а пигмент только один – черный. Просто черный пигмент у серых мышей имеет разное распределение по длине волоса (кольцами), причем наложение волосков происходит с определенным сдвигом, что в совокупности и дает впечатление серого цвета.

В основе образования той или иной окраски – взаимодействие двух пар неаллельных генов:

Aген, определяющий синтез пигмента;

aген, не определяющий синтез пигмента;

Bген, определяющий неравномерное распределение пигмента;

bген, определяющий равномерное распределение пигмента.

P AA BB aa bb

гомозиготы

G AB ab

серые белые

F1 AaBb

серые

AaBb AaBb

У родительской пары – 4 сорта гамет. Чтобы не запутаться при анализе, чертим решетку Пеннета.

F2

AB

Ab

aB

ab

AB

AABB

AABb

AaBB

AaBb

Ab

AABb

Aabb

AaBb

Aabb

aB

AaBB

AaBb

aaBB

aaBb

ab

AaBb

Aabb

aaBb

aabb


Расщепление получается в соотношении 9:3:4 (серые:черные:белые),или 9/16, 3/16, 4/16 потомства. Случаев комплементарного взаимодействия неаллельных генов – 12 (черный и серый цвет).

Примеры комплементарного взаимодействия у человека: нормальный слух – результат взаимодействия двух доминантных неаллельных генов, определяющих нормальное развитие слухового нерва и улитки; белок интерферон также определяется двумя неаллельными генами; можно привести в пример также гемоглобин.

Возможные варианты расщепления в F2: 9:3:4; 9:3:3:1; 9:7.

  1. Доминантный эпистаз. Определение. Примеры.

Эпистаз - такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары подавляется действием гена из другой аллельной пары.

Различают две формы эпистаза – доминантный и рецессивный. При доминантном эпистазе в качестве гена-подавителя (супрессора) выступает доминантный ген, при рецессивном эпистазе – рецессивный ген.

Пример доминантного эпистаза – наследование окраски оперения у кур. Взаимодействуют две пары неаллельных генов:

С – ген, определяющий окраску оперения (обычно пеструю),

с – ген, не определяющий окраску оперения,

I – ген, подавляющий окраску,

i – ген, не подавляющий окраску.

Варианты расщепления в F2 : 12:3:1, 13:3.

У человека примером доминантного эпистаза являются ферментопатии (энзимопатии) – заболевания, в основе которых лежит недостаточная выработка того или иного фермента.

Пример рецессивного эпистаза – так называемый «бомбейский феномен»: в семье у родителей, где мать имела группу крови О, а отец – группу крови А, родились две дочери, из которых одна имела группу крови АВ. Ученые предположили, что у матери в генотипе был ген IB, однако его действие было подавлено двумя рецессивными эпистатическими генами dd.

При доминантном эпистазе, когда доминантный аллель одного гена' (А) препятствует проявлению аллелей другого гена (В или Ь), расщепление в потомстве зависит от их фенотипического значения и может выражаться соотношениями 12:3:1 или 13:3.

  1. Рецессивный эпистаз. Определение, примеры.

Эпистаз

Эпистаз - такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары подавляется действием гена из другой аллельной пары.

Различают две формы эпистаза – доминантный и рецессивный. При доминантном эпистазе в качестве гена-подавителя (супрессора) выступает доминантный ген, при рецессивном эпистазе – рецессивный ген.