ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 24.04.2024
Просмотров: 518
Скачиваний: 1
СОДЕРЖАНИЕ
1.2 Роль молока и молочных продуктов в питании населения
Лекция 2 химический состав молока
2.1 Средний химический состав коровьего молока
3.2 Классификация белков молока
3.5 Белки оболочек жировых шариков
4.2 Характеристика молочного жира
4.3 Фосфолипиды, стеарины и другие липиды
5.1 Общая характеристика углеводов
Лекция 6 минеральные вещества в составе молока
Лекция 7 ферменты в составе молока
7.2 Гидролитические и другие ферменты
Лекция 8 витамины в составе молока
9.2 Посторонние химические вещества
Лекция 10 состояние составных частей молока
Лекция 11 свойства коровьего молока
11.1 Физико-химические свойства молока
11.2 Органолептические свойства
11.3 Технологические свойства молока
14.2 Перекачивание и перемешивание
14.3 Мембранные методы обработки
Лекция 15 изменение составных частей молока при тепловой обработке
16.1 Брожение молочного сахара
16.2 Коагуляция казеина и гелеобразование
Лекция 18 физико-химические процессы при выработке мороженого
Лекция 19 биохимические и физико-химические процессы при производстве сыра
19.1 Сычужное свертывание молока
19.2 Биохимические и физико-химические процессы при обработке сгустка и сырной массы
20.2 Изменение содержания влаги и минеральных веществ
20.3 Формирование структуры, консистенции и рисунка сыра
20.4 Образование вкусовых и ароматических веществ сыра
Лекция 21 физико-химические процессы при производстве плавленных сыров
22.2 Производство масла методом преобразования высокожирных сливок
22.3 Влияние режимов подготовки сливок на процессы маслообразования
Лекция 23 изменение масла в процессе хранения
23.2 Факторы, влияющие на стойкость масла при хранении
24.1 Сгущенное молоко с сахаром
24.2 Сгущенное стерилизованное молоко
24.3 Сухие молочные продукты и зцм
Лекция 25 биохимические основы производства детских молочных продуктов
25.1 Состав и свойства женского молока
4.2 Характеристика молочного жира
Содержание молочного жира в молоке колеблется от 2,8 до 4,5%. По химическому строению молочный жир ничем не отличается от других жиров. Он представляет собой смесь многочисленных триглицеридов (содержание ди- и моноглицеридов составляет всего 1,2 - 2,6% всех глицеридов). Триглицериды молочного жира содержат, как правило, остатки разных кислот.
Молочный жир, выделенный из молока, содержит сопутствующие жироподобные вещества, или природные примеси. К ним относятся фосфолипиды, гликолипиды, стерины, жирорастворимые пигменты (каротин и др.), витамины (A, D, Е). Несмотря на незначительное количество примесей, некоторые из них существенным образом влияют на пищевую ценность молочного жира. Так, фосфолипиды способствуют обмену липидов, стерины служат исходным материалом для синтеза витамина D, каротин - для образования витамина А, витамин Е является естественным антиокислителем жира и т. д.
Жирнокислотный и триглицеридный состав. В состав молочного жира входит свыше 100 жирных кислот.
Жирнокислотный состав молочного жира зависит от рационов кормления, стадии лактации, времени года, породы животных и т. д. В составе жира преобладают насыщенные жирные кислоты, среднее количество которых составляет 65% (колебания от 53 до 77%). Содержание ненасыщенных кислот в среднем равно 35% (при колебании летом 34 - 47%, зимой - 25-39%).
Из насыщенных жирных кислот в молочном жире преобладают пальмитиновая, миристиновая и стеариновая, среди ненасыщенных - олеиновая кислота. Олеиновой и стеариновой кислот в жире содержится больше летом, а миристиновой и пальмитиновой - зимой.
По сравнению с жирами животного и растительного происхождения молочный жир характеризуется большим количеством низкомолекулярных насыщенных жирных кислот - масляной, капроновой, каприловой и каприновой. Их содержание в течение года колеблется от 7,4 до 9,5%. Кроме того, только молочный жир содержит 2,5 - 7% трансизомеров олеиновой кислоты - элаидиновую и вакценовую кислоты.
По числу жирных кислот триглицериды разделяют на тринасыщенные, динасыщенно-мононенасыщенные, мононасыщенно-диненасыщенные и триненасыщенные. От их соотношения зависят физические свойства молочного жира (температура плавления, отвердевания и др.). Зимой в молочном жире увеличивается количество тринасыщенных и динасыщенно-мононенасыщенных триглицеридов. Летом их содержание снижается и возрастает количество легкоплавких триглицеридов, содержащих ненасыщенные жирные кислоты. По этой причине сливочное масло, выработанное летом, часто имеет мягкую консистенцию, выработанное зимой - твердую и крошливую.
Физико-химические свойства. Физико-химические свойства жиров определяются свойствами входящих в их состав жирных кислот. Для их характеристики служат так называемые константы, или физические и химические числа жиров. К важнейшим физическим числам относят температуру плавления и отвердевания, число рефракции, к химическим - число омыления, йодное число, число Рейхерта-Мейссля и число Поленске.
Температурой плавления жира считают температуру, при которой он переходит в жидкое состояние (и становится совершенно прозрачным). Молочный жир является смесью триглицеридов с различными температурами плавления, поэтому его переход в жидкое состояние происходит постепенно.
Температура отвердевания — температура, при которой жир приобретает твердую консистенцию.
Число рефракции характеризует способность жира преломлять луч света, проходящий через него. Чем больше в жире ненасыщенных и высокомолекулярных жирных кислот, тем выше коэффициент преломления, или число рефракции.
Число омыления определяется количеством миллиграммов гидроксида калия, которое необходимо для омыления 1 г жира. Оно характеризует молекулярный состав жирных кислот жира - чем больше в нем содержится низкомолекулярных кислот, тем оно выше.
Йодное число показывает содержание в жире ненасыщенных жирных кислот. Оно выражается в граммах йода, которые связываются 100 г жира. Йодное число молочного жира зависит от стадии лактации, сезона года, кормов. Оно повышается летом и понижается зимой.
Число Рейхерта-Мейссля характеризует содержание в жире летучих, растворимых в воде жирных кислот (масляной и капроновой). Молочный жир, в отличие от других жиров, имеет высокое число Рейхерта-Мей-ссля. Поэтому по его величине судят о натуральности молочного жира.
Число Поленске показывает количество в жире летучих, нерастворимых в воде жирных кислот (каприловой, каприновой и частично лауриновой).
4.3 Фосфолипиды, стеарины и другие липиды
Наиболее распространенные фосфолипиды молока - лецитин (от греч. lekitos — яичный желток) и кефалин (от лат. cephalus -голова), на их долю приходится свыше 60% всех фосфолипидов. Основная часть фосфолипидов молока (60 - 70%) входит в состав оболочек жировых шариков. Их количество в молочном жире вместе с гликолипидами составляет около 1%. Небольшая часть фосфолипидов находится в плазме молока в виде комплексов с белками.
Фосфолипиды обладают способностью эмульгировать жиры и легко образуют комплексы с белками. Так, липопротеидный (лецитино-белковый) комплекс входит в состав оболочек жировых шариков и обеспечивает стойкость жировой эмульсии молока.
Вследствие большого содержания полиненасыщенных жирных кислот фосфолипиды легко окисляются кислородом воздуха (образующиеся в результате окисления альдегиды могут быть причиной появления в жире посторонних привкусов). Они обладают также свойствами слабых антиокислителей (антиоксидантов) и могут усиливать действие истинных антиоксидантов.
При гомогенизации и пастеризации молока часть фосфолипидов (5 - 15%) переходит из оболочек жировых шариков в водную фазу.
Стерины молока представлены в основном холестерином , но в небольших количествах могут встречаться другие стерины животного и растительного происхождения. Содержание стеринов в молоке составляет 0,012 - 0,014%. Они, как и фосфолипиды, находятся в оболочках жировых шариков.
Окраска молочного жира и молока обусловлена наличием в них жирорастворимого пигмента оранжевого цвета - каротина, входящего в группу каротиноидов. Содержание каротина в молоке зависит от состава корма, сезона года и породы животных. Летом в молоке содержится 0,3 - 0,9 мг/кг каротина, зимой - 0,05 - 0,2 мг/кг. Зимой и особенно весной, когда животные получают недостаточное количество каротина с кормами, его содержание в молоке снижается. Сезонные колебания цвета сливочного масла также связаны с изменением содержания каротина в корме животных.
Пастеризация и стерилизация молока незначительно разрушают каротин (на 10 - 13%). При хранении молока и масла на свету его содержание снижается.
Контрольные вопросы:
Что представляет собой молочный жир?
Перечислите физические и химические свойства молочного жира.
Лекция 5 углеводы молока
5.1 Общая характеристика углеводов
Углеводы представляют собой альдегиды или кетоны многоатомных спиртов и полимеры этих соединений. Их делят на моносахариды, олигосахариды и полисахариды.
Углеводы выполняют главным образом энергетическую функцию, а также принимают участие в построении сложных органических соединений (гликопротеидов и др.), выполняющих важную физиологическую роль.
К моносахаридам относятся простые сахара, содержащие три и более углеродных атома: глюкоза, галактоза и, фруктоза, арабиноза, рибоза и ксилоза
К олигосахаридам относится: сахароза, мальтоза и лактоза, к полисахаридам – крахмал, клетчатка и пектин.
Основным углеводом молока является молочный сахар, или лактоза. Наряду с лактозой в молоке содержатся другие углеводы: моносахариды (глюкоза и галактоза) и их производные, а также трисахариды и более сложные олигосахариды. Лактоза и часть моносахаридов находятся в сыворотке в свободном состоянии (в виде истинного раствора), часть моносахаридов и их производных входит в состав углеводных компонентов гликопротеидов. Молочный сахар выполняет главным образом энергетическую функцию и, кроме того, как и другие олигосахариды, является стимулятором роста полезной микрофлоры кишечника новорожденного.
5.2 Молочный сахар
Содержание лактозы в молоке коров составляет в среднем 4,6% (4,4 - 4,9%).
Лактоза - дисахарид, построенный из остатков D-глюкозы и D-галактозы, соединенных связью 1→4,
Остаток галактозы
Остаток глюкозы
α-Лактоза
Лактоза в 5 - 6 раз менее сладкая, чем сахароза, и хуже растворяется в воде.
В молоке молочный сахар находится в двух формах: α и β. При 20°С содержится 40% α-лактозы и 60% β-лактозы. α-Форма менее растворима, чем β-форма. Обе формы могут переходить одна в другую, скорость перехода одной формы в другую зависит от температуры.
Из водных растворов лактоза кристаллизуется с одной молекулой кристаллизационной воды в α-гидратной форме. В такой форме ее получают из молочной сыворотки и используют в производстве пенициллина, в пищевой и фармацевтической промышленности. Кристаллизация лактозы при выработке сгущенного молока с сахаром - очень важная технологическая операция, обусловливающая качество молочных консервов.
При нагревании молока до температуры выше 100°С (особенно при стерилизации и высокотемпературной обработке) молочный сахар частично превращается в лактулозу. Лактулоза отличается от молочного сахара тем, что содержит вместо остатка глюкозы остаток фруктозы. Лактулоза хорошо растворяется в воде (не кристаллизуется даже в концентрированных растворах), в 1,5 - 2 раза более сладкая, чем лактоза. Ее широко применяют в производстве продуктов детского питания, так как кроме перечисленных положительных свойств лактулоза стимулирует развитие бифидобактерий в кишечнике детей. Обычно при выработке сухих молочных продуктов для детского питания используют смесь лактулозы с лактозой - лакто-лактулозу.
При высоких температурах нагревания (160 - 180°С) молочный сахар карамелизуется и раствор лактозы приобретает коричневую окраску. При принятых в молочной промышленности режимах тепловой обработки молока карамелизации лактозы почти не происходит.
Нагревание молока при температуре выше 95°С вызывает его легкое побурение. Оно обусловлено не карамелизацией, а реакцией между лактозой, белками и некоторыми свободными аминокислотами (реакция Майара, или Мейлларда). В результате реакции образуются меланоидины (от греч. melanos - черный) - вещества темного цвета с явно выраженным привкусом карамелизации. Химический