ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 19.05.2024
Просмотров: 454
Скачиваний: 0
СОДЕРЖАНИЕ
§2. Связь характеристик направленности излучения и микрофонного приёма.
§3. Связь чувствительности микрофона с динамическими характеристиками источника звука.
§4. Особенности стереофонического микрофонного приёма.
§5. Расположение артистов и микрофонов в тон-ателье.
§6. Нестандартные способы микрофонного приёма.
На битву святую Крещу тебя, Расплюев.
§3. Тембральные аспекты фонографической стилистики.
§4. Статичные и динамические звуковые изображения.
§1. Фонографическая плоскость.
§2. Фонографическое пространство.
§4. Плановое звукоизображение.
Стереометрические обоснования выбора микрофонной техники.
Манипуляции регуляторами направления (панорамными регуляторами) звукорежиссерского пульта.
Управление спектральными и громкостными признаками удаленности.
Формирование в фонографической картине акустической обстановки и диффузных признаков удаленности.
В этом зале крупноплановая запись данного источника простым микрофонным способом - невозможна.
§6. Понятие об акустическом ключе.
§1. Естественные тембры источников звука. Тембр и спектр.
§2. Пространственно – акустические влияния на тембр
§3. Исполнительские влияния на тембр. Искусственная обработка звуковых сигналов.
§4. Искусственная спектральная окраска.
Сразу станет ясно, что ненаправленный микрофон даёт гораздо более натуральную звукопередачу. И дело здесь далеко не только в том, что этот микрофон обеспечивает больший пространственный охват объекта; в конце концов, эксперимент можно провести при таком расстоянии до источника, когда последний полностью попадёт в зону эффективного приёма направленного микрофона. Причина неестественности в этом случае объясняется гиперболическим подъёмом частотной характеристики в нижней части спектра, названном в электроакустике «эффектом ближней зоны»,
К сказанному, впрочем, не следует относиться, как к вето. Эффект сверхкрупного плана (см. главу «ФОНОГРАФИЧЕСКАЯ КОМПОЗИЦИЯ») вполне может оправдать применение микрофона - приёмника градиента звукового давления с гипертрофированной передачей низких частот.
Что касается высокочастотной части спектра акустического источника, то она определяется отнюдь не частотой основного тона самого верхнего звука интонирующего музыкального инструмента, а частотами обертонов, практический учёт которых может потребовать их передачи во всём диапазоне, доступном тому или иному электроакустическому тракту. Это в максимальной степени относится к источникам с импульсным характером атак, например, фортепиано, ударным и ударно-шумовым инструментам, человеческим голосам.
Заметное обогащение спектра на высоких частотах также происходит при инструментальных или хоровых унисонах. То же можно сказать и о шумовых призвуках, сопутствующих звукоизвлечению.
Но поскольку в естественных акустических полях высокочастотные компоненты в полной мере прослушиваются лишь вблизи источника, а при удалении - постепенно затухают, то требования к амплитудно - частотной характеристике микрофона на верхних частотах тем строже, чем ближе к нему находится акустический объект, соответственно, чем крупнее план фонографического изложения.
В этом случае оказывается, что для большинства источников высокочастотная характеристика микрофона должна простираться до предела человеческой слышимости, несмотря на то, что полный тракт звукопередачи, включая устройства записи-воспроизведения и системы мониторинга, может вносить собственные ограничения. В справедливости сказанного точно так же убеждают сравнительные эксперименты с парой микрофонов, обладающих при прочих равных условиях неодинаковыми частотными диапазонами электроакустического преобразования.
Но гораздо серьёзнее требования, предъявляемые не к пределам АЧХ микрофона, а к её равномерности в высокочастотной области. Речь идёт об экстремумах (резонансах), обусловливающих жёсткую, металлическую окраску (разумеется, когда она нежелательна). Это происходит оттого, что обертоновый состав спектра источника передаётся с нарушением пропорций между отдельными высокочастотными составляющими, причём компенсировать этот дефект удаётся далеко не всегда из-за неполной адекватности характеристик корректирующих фильтров и форм локальных подъёмов частотной характеристики микрофона.
Некоторые фирмы - изготовители микрофонов, рассчитывая на положительные субъективные оценки потребителей, добиваются намеренных высокочастотных резонансов в своих конструкциях. Применять эти микрофоны следует с известной осторожностью. Впечатления действительно хороши, если такие приёмники устанавливаются на большом расстоянии от акустического объекта, и указанные подъёмы АЧХ возмещают дистанционные потери на высоких частотах, пусть даже с некоторой окраской, кстати сказать, не всегда неприятной на слух. В ближней же зоне избирательное, резонансное подчёркивание высокочастотных составляющих почти всегда оставляет в звуке некий «электроакустический налёт».
Заметим попутно, что в этом кроется одна из причин гипертрофированной передачи звонких и шипящих согласных человеческой речи.
Среднечастотный диапазон, спектров звуковых источников, как правило, проблем в микрофонной передаче не вызывает. Исключения составляют случаи специфической окраски, вносимой микрофонами опять-таки в тех случаях, когда их АЧХ имеет локальные экстремумы в средней части; это, в основном, характерно для конструкций с большими габаритами, сложными геометриями форм и т. п.
Но необходимо помнить, что причиной заметной акустической окраски звука могут быть некоторые дефекты тон-ателье, особенно, когда его размеры невелики, имеются архитектурные ниши, полости или образуются стоячие волны. Иногда окраска объясняется местом установки микрофона вблизи протяженного источника, в формировании звука которого большую роль играют дека или мензура; излучения разными их участками интерферируют, и в области нахождения микрофона какая-нибудь зона спектра может оказаться подчёркнутой.
Ниже будет сказано также о колористическом влиянии характеристик направленности источников и микрофонов в их взаимоотношениях.
Убедится практически в том, что вина в окраске звука лежит на микрофоне, сравнительно несложно: его нужно поочерёдно располагать в разных точках тон-ателье, желательно ближе к источнику, чтобы исключить влияние архитектурной акустики. Если «красит» действительно микрофон, то перемещения мало что изменят. Для точности оценок такой эксперимент звукорежиссёру лучше всего проводить с ассистентом, и, по возможности, быстро, дабы не сработал эффект привыкания, когда окраска звука перестаёт обращать на себя внимание.
В заключении хочется добавить, что звукопередача музыкальных инструментов нижних регистров, в особенности при удалённом изложении, значительно снижает требования к высокочастотной области АЧХ применяемых микрофонов. Желательно только, чтобы частотная характеристика имела в верхней области спад монотонного характера.
Инженерные службы звукозаписывающих студий предоставляют звукорежиссёрам техническую документацию, где с тем или иным приближением отражены амплитудно - частотные характеристики имеющихся микрофонов. Благодаря этому, во время предварительного анализа записываемого материала возможен отбор, в какой-то степени априорный, необходимых электроакустических приёмников.
§2. Связь характеристик направленности излучения и микрофонного приёма.
Акусто - геометрическая структура излучения звука любым музыкальным инструментом довольно сложна, и анализировать её для практических целей можно лишь паллиативно, с большими допущениями. Однако, в аспекте данной главы вполне достаточно рассмотреть общие принципы формирования отдельных участков звукового поля с тем, чтобы увязать их свойства с характеристиками направленности примеряемых микрофонов.
Для этой цели вспомним, что среди звуковых волн плоская, в отличие от сферической, обладает более выраженной направленностью. Но для её возбуждения размеры звучащей поверхности (деки, мембраны или выходного отверстия раструба) должны заметно превышать длину волны излучения, что реально только для средних и высоких частот спектра. В то же время, для образования сферической (шаровой) волны необходим источник, излучающий размер которого много меньше её длины (это существует, преимущественно, на низких частотах).
Сказанное справедливо для небольших расстояний от источника, ибо с удалением фронт плоской волны искривляется (на акустическом жаргоне: «волны разбегаются»), а сфера шаровой волны большого радиуса постепенно вырождается в плоскость. Тем самым, отчасти, объясняется возрастание акустической
однородности при увеличении расстояния до источника.
Вблизи же объекта существование направленных, плоских волн обусловливает относительное постоянство интенсивностизвука (и звукового давления), излучаемого перпендикулярно возбуждающей поверхности. В тон-ателье с поглощающей акустической отделкой такая ситуация может наблюдаться вплоть до удаления на несколько метров. Однако, сам факт существования акустической направленности свидетельствует о том, что громкостное восприятие в этом случае зависит от слушательского азимута. То же самое нужно сказать о «восприимчивости» микрофона, если и он является направленным.
Согласно рис. 1, электрический сигнал направленного микрофона М1, ориентированного по нормали к источнику плоской звуковой волны, будет выше сигнала микрофона М2, расположенного под углом к волновому фронту. Напротив, звуковое давление в поле сферической волны убывает пропорционально квадрату расстояния от источника. Но при этом интенсивность волны - изотропная. На рис. 2 сигналы микрофонов М1 - М4 при прочих равных условиях одинаковы, независимо от характеристик их направленности (здесь, для простоты, пока не учитывается влияние акустики тон-ателье).
М2
М1 м3 м4 Источник
шаровых волн
Рис. 2
Практически, для всех источников звука, в частности, для музыкальных инструментов, ближние акустические поля являются по своему характеру смешанными, так как соответствуют сложному спектру возбуждения. Низкочастотные компоненты, в особенности те, для которых соблюдается большое отношение длин волн к размерам излучателей, порождают сферические волны, а среднечастотные, тем более высокочастотные составляющие, в противоположность, - плоские волны. Область существования последних с нужной практической точностью может считаться как бы ограниченной поверхностями, примыкающими перпендикулярно к контуру основной излучающей части музыкального инструмента. Впрочем, для оценки направленности плоской волны иногда достаточно просто использовать ось излучения, особенно, когда не приходится скрупулёзно подбирать место расположения и азимут микрофона во имя полной передачи всех спектральных богатств источника.
Следует помнить, что плоскими волнами передаются, во-первых, большинство обертонов музыкальных инструментов, а во-вторых - большинство шумов (щелчков), сопутствующих звукоизвлечению. Разумеется, исключения составляют гулкие низкочастотные призвуки, порождающие сферические волны.
В рамках данного параграфа уместно рассмотреть влияние на микрофонный приём тон-ателье как некоего интегрального источника звука. Достаточно заметить, что диффузное звуковое поле изобилует волнами самых разных форм и направлений, как правило, независимо от характера волн, возбуждающих акустические процессы. Исключения составляют ранние отражения, на что в начале главы уже обращалось внимание. Помещения с плохой диффузностью и маленькие комнаты сразу впечатляют наш слух своей специфичностью, и если последнюю передавать не нужно, то звукорежиссёр обязан не жалеть времени на тщательное исследование архитектурных зон, где, по преимуществу, существуют какие-либо актуальные звуковые признаки.
Не все коллеги разделяют мнения о наличии картины ранних отражений. В особенности это относится к ортодоксальным приверженцам волновой, а не статистической теории акустических процессов в закрытых помещениях. Что ж, переубеждать кого-либо не входит в задачи этой книги. В конце концов, не так уж важно, как что называется, когда речь идёт о вещах явно слышимых, пусть это и не акустические рефлексы, а собственные излучения тон-ателье, клеточки которого от звучащего источника превратились в микроскопические музыкальные инструменты, способные в своём неисчислимом множестве соперничать с огромным оркестром во всей его регистровой и тембральной полноте.