Файл: Микрофонный прием.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.05.2024

Просмотров: 487

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Микрофонный приём

§1. Связь спектрального состава акустического сигнала и амплитудно-частотной характеристики (ачх) электроакустического преобразования микрофона.

§2. Связь характеристик направленности излучения и микрофонного приёма.

М1 м3 м4 Источник

§3. Связь чувствительности микрофона с динамическими характеристиками источника звука.

§4. Особенности стереофонического микрофонного приёма.

§5. Расположение артистов и микрофонов в тон-ателье.

§6. Нестандартные способы микрофонного приёма.

Заключение.

На битву святую Крещу тебя, Расплюев.

Спасай Россию!

§3. Тембральные аспекты фонографической стилистики.

§4. Статичные и динамические звуковые изображения.

Фонографическая композиция

§1. Фонографическая плоскость.

§2. Фонографическое пространство.

§3. Акустическая обстановка.

§4. Плановое звукоизображение.

§5. Техническая реализация.

Стереометрические обоснования выбора микрофонной техники.

Манипуляции регуляторами направления (панорамными регуляторами) звукорежиссерского пульта.

Управление спектральными и громкостными признаками удаленности.

Формирование в фонографической картине акустической обстановки и диффузных признаков удаленности.

В этом зале крупноплановая запись данного источника простым микрофонным способом - невозможна.

§6. Понятие об акустическом ключе.

Фоноколористика

§1. Естественные тембры источников звука. Тембр и спектр.

§2. Пространственно – акустические влияния на тембр

§3. Исполнительские влияния на тембр. Искусственная обработка звуковых сигналов.

§4. Искусственная спектральная окраска.

§5. Темброво - спектральная композиция.

§6. Слуховая тренировка.

В главе «ФОНОГРАФИЧЕСКАЯ КОМПОЗИЦИЯ» рассматривался вопрос об иллюзии размерности (объёмности) квазиобъектов. Для этой цели часто применяют два, а иногда и большее число микрофонов, устанавливаемых у одного источника. Вопрос направленности этих микрофонов в данном случае принципиального значения не имеет, и может решаться из вышеизложенных соображений. Следует только иметь в виду фазовое соотношение сигналов, поскольку они будут смешиваться, предположительно, в одной области, если не точке стереофонической картины; в чисто техническом смысле - суммироваться. Электрическая интерференция приведет к резко неравномерной, почти гребенчатой спектральной характеристике звукопередачи, что не замедлит сказаться на тембре, особенно в тех его областях, где длины волн излучения соизмеримы с расстоянием между микрофонами.

Критическим случаем является установка двух микрофонов у разных сторон барабанов или больших бонгов (том - томов) при наличии двух мембран («пластиков»). Воздушный столб в замкнутом пространстве этих музыкальных инструментов при атаке вызывает согласованные колебания мембран на частоте основного тона, которые микрофонами, расположенными навстречу друг другу» воспринимаются, как противофазные. В результате, при смешивании микрофонных сигналов основные тона инструментов заметно уменьшаются, атаки становятся обострёнными.

Однако ситуацию не следует рассматривать, как катастрофическую. Во-первых, сигналы двух микрофонов не обязательно должны смешиваться в равных долях, и это уже упрощает проблему. Во-вторых, в микрофонных каналах подавляющего большинства современных звукорежиссёрских пультов имеется инвертор фазы входного сигнала, который можно включить, если дело принимает полярный характер. В-третьих, упомянутые спектральные модуляции вполне регулируются небольшим изменением положения микрофонов; этим достигается тембральный оптимум. И вообще, полученная совокупная окраска, как ни странно, может иной раз оказаться не просто приемлемой, но даже выразительной и привлекательной в своей необычности.

Чтобы использовать два монофонических микрофона для

конкретизации горизонтальных границ большого звукового объекта, например, оркестра, без боязни нарушить фазовую корреляцию сигналов правого и левого каналов, необходимо устанавливать их на максимально возможном угловом расстоянии по отношению к центральной части объекта, для которой фазовый сдвиг наиболее актуален при совмещении стереофонической записи в одноканальных устройствах воспроизведения (см. рис. 3)


Рис.3

Использование направленности стереомикрофонов, вообще говоря, подчиняется тем же закономерностям, о которых говорилось выше. Дополнительно следует усвоить, что диаграммы направленности совмещённых стереофонических приёмников, точнее, пространственный угол обзора каждого из микрофонов, определяют максимальный «разворот» стереопары, при котором фонографическое изображение большого объекта (рояля, хора, инструментальной группы или оркестра в целом) при всей полноте охвата источника не будет иметь разрыва в центре стереофонической картины. На практике такая ситуация отчётливо наблюдается, когда стереоприёмники с диаграммой направленности в виде «восьмёрки», где половина эффективного телесного угла может не превышать 30°- 40°, разворачиваются до взаимного угла в 90°, и звуковое изображение теряет слитность, обнажая два совершенно очевидных азимута - левый и правый, благодаря неоднородности источника (рис. 4).

Рис. 4

Впрочем, «разорванное» пространство, как фонографический образ вполне употребимо, и не следует запрещать себе пользоваться этим приёмом только оттого, что данный вопрос подвергнут здесь такому педантичному обсуждению.


§3. Связь чувствительности микрофона с динамическими характеристиками источника звука.

Профессиональные студии звукозаписи располагают высококачественными микрофонами, работающими в довольно широком диапазоне принимаемых ими звуковых давлений. Тем не менее, необходимо знать, что микрофоны, в зависимости от типов электроакустических преобразователей, обладают различной чувствительностью и разной перегрузочной способностью, то есть качеством, определяющим максимально возможное звуковое давление источника, при котором ещё не наступают искажения передаваемого сигнала. Не вдаваясь глубоко в сугубо технические аспекты вопроса, отметим только, что, как правило, чувствительность, и перегрузочная способность микрофонов связаны друг с другом противоположным образом: чем выше одно, тем хуже (ниже) другое. Косвенное подобие сказанному наблюдается и во взаимосвязи перегрузочной способности и частотного диапазона микрофонной передачи. Всё это особенно характерно для электроакустических приёмников, содержащих активные, т. е. электронные звенья, усилительные или

согласующие.

Поэтому при прочих равных условиях динамические микрофоны выдерживают большую акустическую нагрузку, чем конденсаторные. Промежуточное положение между ними занимают ленточные приёмники градиента звукового давления.

Нужно относиться с повышенным вниманием к рассматриваемому вопросу, ибо искажения, возникшие на стадии микрофонного приёма вследствие перегрузки, исправить в дальнейшем - невозможно.

В технических паспортах всегда указывается максимальное звуковое давление, при котором микрофон работает ещё линейно. В справочниках по акустике музыкальных инструментов можно найти сведения об акустическом давлении, развиваемом ими в нюансах ff-fff. Понятно, что на основании этих данных ориентировочно решается вопрос взаимосогласования. Однако в расчёт следует принимать не просто среднестатистические характеристики источников. Необходимо учитывать величину пик-фактора, указывающего на действительное максимальное звуковое давление, развиваемое акустическим объектом в атаках или иных экстремальных превышениях номинального значения.

Чувствительность конденсаторного микрофона, ограниченная, как уже говорилось, наличием электронных цепей (преобразователей переменного емкостного тока в выходное напряжение) может быть снижена оперативно. У большинства конструкций имеется переключатель, позволяющий уменьшать чувствительность, соответственно, повышать перегрузочную способность в интервале (5 - 20) дБ. Не следует, впрочем, безоглядно снижать чувствительность микрофона до предельного значения, чтобы навсегда перестать думать об электроакустических перегрузках. Эпизоды, нюансируемые в р1апо, могут потребовать дополнительного усиления, и если таковое осуществлять за счёт входных звеньев звукорежиссёрского пульта, то наверняка возникнет проигрыш в уровне электрического шума.


Существует ещё одна причина электроакустической перегрузки, о которой не найдётся сообщений ни в технической документации, ни в справочниках. Речь идёт о работе приёмников градиента звукового давления, и вообще направленных микрофонов вблизи низкочастотных источников звука. В большинстве случаев усиление нижней части спектра очевидно, и, так как известно об эффекте ближней зоны, перегрузку можно предусмотреть. Но бывает, что искажения возникают, казалось бы, без всякой слышимой причины. Это происходит тогда, когда в акустическом спектре однородной группы музыкальных инструментов, особенно инструментов нижнего регистра - тромбонов, валторн, виолончелей, контрабасов (аrсо) или в хоре появляются инфранизкочастотные составляющие унисонной природы. Поскольку эта спектральная область воспроизводится далеко не всякими аудиомониторными устройствами, то адекватных слуховых ощущений не будет. Будут слышны лишь продукты искажений.

Напомним, что в таком случае часто обращает на себя внимание недостаточное количество звука (см. выше), вопреки большим показаниям индикатора уровня.

Вообще говоря, наличие инфранизкочастотных колебаний в акустических спектрах может иметь другую этиологию, связанную, например, с особенностями архитектуры тон-ателье. К подобным по своему характеру искажениям приводят и стоячие волны.

Во избежание указанных дефектов в микрофонных конструкциях предусматриваются фильтры ВЧ первого или второго порядка с частотами среза от 30 до 300 герц. Пользоваться следует непременно этими фильтрами, а не корректорами микрофонных каналов звукорежиссёрского пульта, пусть последнее и представляется более комфортным. Устранять искажения нужно там, где они возникают.

Чисто механическая перегрузка микрофонов встречается значительно реже; на практике она связана с наличием в акустических сигналах мощных составляющих аэродинамического типа. Чаще всего с нею сталкиваются при записи вокалистов, когда артикуляция взрывных согласных сопровождается

концентрированной воздушной струёй. С этим явлением, именуемом в звукорежиссёрском обиходе «задувание», борются средствами так называемой ветрозащиты - колпачка из акустического поролона, надеваемого на микрофон. Но, создавая действительное препятствие струе воздуха, такой колпачок проявляет серьёзный недостаток, связанный с поглощением высокочастотных акустических компонент. Разные конструкции ветрозащитных устройств позволяют в той или иной степени снижать этот недостаток, но ни одно из них не лишено его полностью. Весьма эффективными представляются ветрорассеиватели из тонкой плотной металлической или капроновой сетки, устанавливаемые под некоторым углом на пути от источника к микрофону. Их действие основано не на поглощении воздушной струи, (и высокочастотных колебаний), а на её рассеивании, уменьшении её концентрированное, соответственно, аэродинамичности; при этом нагрузка на микрофон ощутимо снижается.


Необходимо знать, что «задуванием» чреваты не только вокалисты, амбюшурные и лабиальные духовые инструменты при ближнем приёме. Многие ударные инструменты, особенно если учитывать их современную динамику, формируют вблизи себя акустические потоки вполне аэродинамического свойства.

К области паразитных реакций микрофонов следует отнести также их чрезвычайную чувствительность к механическим вибрациям. Правда, эта проблема скорее касается устройств для крепления и установки приёмников, но упомянуть о ней здесь нужно, ибо результаты вибрации, в конечном итоге, проявляются в микрофонном сигнале.

Несмотря на то, что большинство крепёжных конструкций оснащены специальными амортизаторами, вибрации пола под ними всё-таки доходят до приёмной части, особенно, если спектр механических помех сосредоточен в низкочастотной или, что ещё хуже, в инфразвуковой области. Такое характерно, к примеру, для поездов метрополитена, когда подземная линия проходит вблизи здания студии. Почва отфильтровывает вибрацию, сообщая тон-ателье самые нижние составляющие колебаний.

Далеко не всякие студии располагают специфическими, так называемыми плавающими полами в тон-ателье типа «коробка в коробке». Подобные конструкции эффективно защищают микрофоны от вибраций, в том числе и низкочастотных. Взамен же можно «рекомендовать лишь массивные, толстые резиновые ковры, маты или даже мягкие кресла» пуфы, располагаемые под микрофонными стойками.

Дефекты от инфрачастотных вибраций не всегда проявляются впрямую, то есть в виде акустического продукта, излучаемого громкоговорителями, благо далеко не все из них воспроизводят сверхнизкочастотные колебания, информировать о которых способны, впрочем, пиковые индикаторы уровня. В конце концов, можно применить электрическую коррекцию (фильтры ВЧ), если таковая, конечно, не повлияет отрицательно на полезный сигнал. Проблема усугубляется двумя другими связанными обстоятельствами. Во-первых, вибрационная инфранизкочастотная добавка к колебаниям приёмной мембраны микрофона приближает условия его работы к пределу перегрузочной способности, что чревато появлением нелинейных искажений. Во-вторых, всегда возникает ощущение недостаточности в количестве звука, при повышенных показаниях индикаторов, к коим, как теперь стало ясно, нужно относиться со вниманием.

Если сами музыкальные инструменты или отдельные части их конструкций (большие ударные, педальный механизм рояля, т. п.) становятся источниками механических вибраций, то это также следует расценивать и как причины повышенной слышимости «чужих» звуковых объектов в чувствительных соседних микрофонных каналах, и как причины передачи различного рода призвуков.