ВУЗ: Белорусский государственный медицинский университет
Категория: Ответы на вопросы
Дисциплина: Медицина
Добавлен: 13.02.2019
Просмотров: 11058
Скачиваний: 33
СОДЕРЖАНИЕ
Раздел I. Теоретические основы дисциплины «Общественное здоровье и здравоохранение»
Права медицинских работников. Обязанности медицинских работников (Закон РБ «О здравоохранении»).
Врачебная этика и медицинская деонтология (Закон РБ «О здравоохранении»).
Раздел II. Основы медицинской статистики. Организация медико-статистического исследования
Динамический ряд, виды, методы выравнивания. Показатели динамического ряда, методика вычисления.
Раздел III. Общественное здоровье и методы его изучения. Важнейшие медико-социальные проблемы
Раздел IV. Охрана здоровья населения
Права главных государственных санитарных врачей, порядок их назначения и взаимодействия.
Анализ деятельности службы государственного санитарного надзора.
Оценка деятельности центра гигиены и эпидемиологии на основе модели конечных результатов.
Раздел V. Современные проблемы профилактики
Раздел VI. Основы управления, планирования, финансирования и экономики здравоохранения
Управление. Научные основы управления. Методы управления, характеристика. Стили руководства.
Органы управления службой государственного санитарного надзора.
Научная организация труда. Автоматизированные системы управления в здравоохранении.
Планирование здравоохранения. Задачи и принципы планирования. Виды планов, их характеристика.
Удельный вес больниц общего профиля |
= |
214 * 100
|
= |
29.8% |
719
|
Экстенсивные показатели используются для определения структуры явления и сравнительной оценки соотношения составляющих его частей. Экстенсивные показатели всегда взаимосвязаны между собой, т. к. их сумма всегда равна 100 процентам: так, при изучении структуры заболеваемости удельный вес отдельного заболевания может возрасти при его истинном росте; при одном и том же его уровне, если число других заболеваний снизилось; при снижении числа данного заболевания, если уменьшение числа других заболеваний происходит более быстрыми темпами.
Соотношения - представляют собой соотношение двух самостоятельных, независимых друг от друга, качественно разнородных величин. К показателям соотношения относятся показатели обеспеченности населения врачами, средними медицинскими работниками, больничными койками и др.
Показатель соотношен. |
= |
Абсолютный размер явления * 100 (1000, 10000, 100000) |
Абс. размер среды, не продуцирующей данное явление
|
Вычисление показателя соотношения производится следующим образом: например, в Ливане с численностью населения 3789 тыс. жителей в медицинских учреждениях в 1996 году работали 3941 врачей.
Показатель обеспеченности населения врачами |
= |
3941 * 10000
|
= |
10,4 о/ооо |
3789000
|
Наглядности - применяются с целью более наглядного и доступного сравнения статистических величин. Показатели наглядности представляют удобный способ преобразования абсолютных, относительных или средних величин в легкую для сравнения Форму. При вычислении этих показателей одна из сравниваемых величин приравнивается к 100 (или 1), а остальные величины пересчитываются соответственно этому числу.
Показатель наглядности |
= |
Явление 1 * 100 |
Такое же явление из ряда сравниваемых, принятое за 100 |
Вычисление показателей наглядности производится следующим образом: например, численность населения Иордании составила: в 1994г. - 4275 тыс. человек, в 1995г. - 4440 тыс. человек, в 1996г.- 5439 тыс. человек.
Показатель наглядности: 1994г.-100%;
-
1995г.
=
4460 *100
=
103.9%;
4275
1996г.
=
5439*100
=
127.2%
4275
Показатели наглядности указывают, на сколько процентов или во сколько раз произошло увеличение или уменьшение сравниваемых величин. Показатели наглядности используются чаше всего для сравнения данных в динамике, чтобы представить закономерности изучаемого явления в более наглядной форме.
При пользовании относительными величинами могут быть допущены некоторые ошибки. Приведем наиболее частые из них:
1. Иногда судят об изменении частоты явления на основе экстенсивных показателей, которые характеризуют структуру явления, а не его интенсивность.
3. При расчете специальных показателей следует правильно выбирать знаменатель для расчета показателя: например, показатель послеоперационной летальности необходимо рассчитывать по отношению к оперированным, а не всем больным.
4. При анализе показателей следует учитывать Фактор времени:
нельзя сравнивать между собой показатели, вычисленные за различные периоды времени: например, показатель заболеваемости за год и за полугодие, что может привести к ошибочным суждениям.
5. Нельзя сравнивать между собой общие интенсивные показатели, вычисленные из неоднородных по составу совокупностей, поскольку неоднородность состава среды может влиять на величину показателя.
2. Нельзя складывать и вычитать статистические показатели, которые рассчитаны из совокупностей, имеющих разную численность, ибо это приводит к грубым искажениям показателя.
Средние величины дают обобщающую характеристику статистической совокупности по определенному изменяющемуся количественному признаку.
Средняя величина характеризует весь ряд наблюдений одним числом, выражающим общую меру изучаемого признака. Она нивелирует случайные отклонения отдельных наблюдений и дает типичную характеристику количественного признака.
Одним из требований при работе со средними величинами является качественная однородность совокупности, для которой рассчитывается средняя. Только тогда она будет объективно отображать характерные особенности изучаемого явления. Второе требование заключается в том, что средняя величина только тогда выражает типичные размеры признака, когда она основывается на массовом обобщении изучаемого признака, т.е. рассчитывается на достаточном числе наблюдений.
Средние величины получаются из рядов распределения (вариационных рядов).
Вариационный ряд - ряд однородных статистических величин, характеризующих один и тот же количественный учетный признак, отличающихся друг от друга по своей величине и расположенных в определенном порядке (убывания или возрастания).
Элементами вариационного ряда являются:
Варианта - v - числовое значение изучаемого меняющегося количественного признака.
Частота - p (pars) или f (frequency) - повторяемость вариант в вариационном ряду, показывающая, как часто встречается та или иная варианта в составе данного ряда.
Общее число наблюдений - n (numerus) - сумма всех частот: n=ΣΡ. Если общее число наблюдений более 30, статистическая выборка считается большой, если n меньше или равно 30 - малой.
Вариационные ряды бывают прерывные (дискретные), состоящие из целых чисел, и непрерывные, когда значения вариант выражены дробным числом. В прерывных рядах смежные варианты отличаются друг от друга на целое число, например: число ударов пульса, число дыханий в минуту, число дней лечения и т.д. В непрерывных рядах варианты могут отличаться на любые дробные значения единицы. Вариационные ряды бывают трех видов. Простой - ряд, в котором каждая варианта встречается один раз, т.е. частоты равны единице.
Обычный - ряд, в котором варианты встречаются более одного раза.
Сгруппированный - ряд. в котором варианты объединены в группы по их величине в пределах определенного интервала с указанием частоты повторяемости всех вариант, входящих в группу.
Сгруппированный вариационный ряд используют при большом числе наблюдений и больном размахе крайних значений вариант.
Обработка вариационного ряда заключается в получении параметров вариационного ряда (средней величины, среднего квадратического отклонения и средней ошибки средней величины).
В медицинской практике наиболее часто используются следующие средние величины: мода, медиана, средняя арифметическая. Реже применяются другие средние величины: средняя геометрическая (при обработке результатов титрования антител, токсинов, вакцин); средняя квадратическая (при определении среднего диаметра среза клеток, результатов накожных иммунологических проб); средняя кубическая (для определения среднего объема опухолей) и другие.
Мода (Mo) - величина признака, чаще других встречающаяся в совокупности. За моду принимают варианту, которой соответствует наибольшее количество частот вариационного ряда.
Медиана (Me) - величина признака, занимающая срединное значение в вариационном ряду. Она делит вариационный ряд на две равные, части.
На величину моды и медианы не оказывают влияния числовые значения крайних вариант, имеющихся в вариационном ряду. Они не всегда могут точно характеризовать вариационный ряд и применяются в медицинской статистике относительно редко. Более точно характеризует вариационный ряд средняя арифметическая величина.
Средняя арифметическая (М, или ) - рассчитывается на основе всех числовых значений изучаемого признака.
В простом вариационном ряду, где варианты встречаются только по одному разу, вычисляется средняя арифметическая простая по формуле:
, где V - числовые значения вариант,
n - число наблюдений,
Σ - знак суммы
В обычном вариационном ряду вычисляется средняя арифметическая взвешенная по формуле:
, где V - числовые значения вариант.
Ρ - частота встречаемости вариант.
n - число наблюдений.
- знак суммы
Пример расчета средней арифметической взвешенной приведен в таблице 4.
Таблица 4
Определение средней длительности лечения больных в специализированном отделении больницы
Число дней, V
|
Число больных, Ρ
|
V * Ρ
|
16
|
1
|
16
|
17
|
7
|
119
|
18
|
8
|
144
|
19
|
16
|
304
|
20
|
29
|
580 |
21
|
20
|
420 |
22
|
7
|
154 |
23
|
5
|
115 |
24 |
2 |
48 |
n=95 =1900,
В приведенном примере модой является варианта, равная 20 дням, поскольку она повторяется чаще других - 29 раз. Мо = 20. Порядковый номер медианы определяется по формуле:
Место медианы приходится на 48-ю варианту, числовое значение которой равно 20. Средняя арифметическая, рассчитанная по формуле, равна также 20.
Средние величины являются важными обобщающими характеристиками совокупности. Однако за ними скрываются индивидуальные значения признака. Средние величины не показывают изменчивости, колеблемости признака.
Если вариационный ряд более компактен, менее рассеян и все отдельные значения расположены вокруг средней, то средняя величина дает более точную характеристику данной совокупности. Если вариационный ряд растянут, отдельные значения значительно отклоняются от средней, т.е. имеется большая вариабельность количественного признака, то средняя менее типична, хуже отражает в целом весь ряд.
Одинаковые по величине средние могут быть получены из рядов с различной степенью рассеяния. Так, например, средняя длительность лечения больных в специализированной отделении больницы также будет равна 20, если все 95 больных находились на стационарном лечении по 20 дней. Обе вычисленные средние равны между собой, но получены из рядов с разной степенью колеблемости вариант.
Следовательно, для характеристики вариационного ряда, помимо средней величины, необходима другая характеристика, позволяющая оценить степень его колеблемости.
Характеристика разнообразия изучаемого признака в выборочной совокупности. Среднее квадратическое отклонение, методика вычисления, использование в деятельности врача.
Среднее квадратическое отклонение.
Приближенный метод оценки колеблемости вариационного ряда - это определение лимита, т.е. минимального и максимального значения количественного признака, и амплитуды - т.е. разности между наибольшим и наименьшим значением вариант (Vmax - Vmin). Однако лимит и амплитуда не учитывают значений вариант внутри ряда.
Основной общепринятой мерой колеблемости количественного признака в пределах вариационного ряда является среднее квадратическое отклонение (σ - сигма).
Чем больше среднее квадратическое отклонение, тем степень колеблемости данного ряда выше.
Так, например, при изучении средней длительности лечения больных в двух больницах были получены следующие результаты:
-
Больница 1
Больница 2
Μ = 20 дней
Μ = 20 дней
σ = 3 дня
σ = 5 дней
Средняя длительность лечения в обеих больницах одинакова, однако во второй больнице колебания были значительнее.
Методика расчета среднего квадратического отклонения включает следующие этапы:
1. Находят среднюю арифметическую величину (Μ).
2.
Определяют отклонения отдельных вариант
от средней арифметической
(V-M=d).
В медицинской статистике отклонения
от средней обозначаются как d
(deviate).
Сумма всех отклонений равняется нулю
(графа 3. табл.
5).
3. Возводят каждое отклонение в квадрат (графа 4. табл. 5).
4. Перемножают квадраты отклонений на соответствующие частоты d2*p (графа 5, табл. 5).
5. Вычисляют среднее квадратическое отклонение по формуле:
при n больше 30, или . при n меньше либо равно 30, где n - число всех вариант
Методика расчета среднего квадратического отклонения приведена в таблице 5.
Среднее квадратическое отклонение позволяет установить степень типичности средней, пределы рассеяния ряда, сравнить колеблемость нескольких рядов распределения. Величина среднего квадратического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратическое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv), представляющий собой относительную величину: процентное отношение среднего квадратического отклонения к средней арифметической.
Таблица 5
Число дней V |
Число больных Ρ |
d |
d2 |
d2*p |
16 |
1 |
-4 |
16 |
16 |
17 |
7 |
-3 |
9 |
63 |
18 |
8 |
-2 |
4 |
32 |
19 |
16 |
-1 |
1 |
16 |
20 |
29 |
0 |
0 |
0 |
21 |
20 |
1 |
1 |
20 |
22 |
7 |
2 |
4 |
28 |
23 |
5 |
3 |
9 |
45 |
24 |
2 |
4 |
16 |
32 |
М=20 n=95 Σ=252
σ |
= |
252 |
= |
2,6 |
95 |
Коэффициент
вариации вычисляется по формуле:
-
Cv
=
σ * 100
Μ
Пример: по данным специального исследования средний рост мальчиков 7 лет в городе N составил 117.7 см (σ=5.1 см), а средний вес - 21,7 кг (σ=2,4 кг). Оценить колеблемость роста и веса путем сравнения средних квадратических отклонений нельзя, т. к. вес и рост - величины именованные. Поэтому используется относительная величина - коэффициент вариации:
,
Сравнение коэффициентов вариации роста (4.3%) и веса (11.2%) показывает, что вес имеет более высокий коэффициент вариации, следовательно, является менее устойчивым признаком.
Чем выше коэффициент вариации, тем большая изменчивость данного ряда. Считают, что коэффициент вариации свыше 30 % свидетельствует о качественной неоднородности совокупности.
Средние величины широко применяются в повседневной работе медицинских работников. Они используются для характеристики Физического развития, основных антропометрических признаков: рост, вес. окружность груди, динамометрия и т.д. Средние величины применяются для оценки состояния больного путем анализа физиологических, биохимических сдвигов в организме: уровня артериального давления, частоты сердечных сокращений. температуры тела, уровня биохимических показателей, содержания гормонов и т. д. Широкое применение средние величины нашли при анализе деятельности лечебно-профилактических учреждений, например: при анализе работы стационаров вычисляются показатели среднегодовой занятости койки, средней длительности пребывания больного на койке и т. д.