Файл: Тема Передаточные механизмы.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 157

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, МПа;

SH – коэффициент запаса прочности;

ZN – коэффициент долговечности;

ZR – коэффициент, учитывающий шероховатость сопряженных поверхнос­тей зубьев;

– коэффициент, учитывающий окружную скорость;

ZL – коэффициент, учитывающий влияние вязкости масла;

ZXкоэффициент, учитывающий размер зубчатого колеса.
В проектировочном расчете = 0,9.

В качестве допускаемого контактного напряжения для косозубой передачи при проектировочном расчете принимают условное допускаемое контактное напряжение, определяемое по формуле

= . (2.6)
При этом должно выполняться условие < 1,23 , где – меньшее из значений и . В противном случае принимают =

= .

Предел контактной выносливости , соответствующий базовому числу циклов напряжений, принимают по табл. 2.5.
Таблица 2.5

Предел контактной выносливости при базовом числе циклов


Способ термической и химико-термической обработки зубьев

Средняя твердость поверхности зубьев

Сталь

Формула для расчета значений

Отжиг, нормализация или улучшение

Менее НВ 350

Углеродистая и легированная

=

Объемная и

поверхностная закалка

HRC 38…50

=

Цементация и нитроцементация

Более HRC 56

Легированная

=

Азотирование

HV 550…750

= 1050



При отсутствии необходимых фактических данных можно применить следующие минимальные коэффициенты запаса прочности SH:

– для зубчатых колес, выполненных из материала однородной структуры, принимаем SHmin = 1,1;

– для колес с поверхностным упрочнением зубьев SHmin = 1,2;

– для передач, выход из строя которых связан с тяжелыми последствия­ми, значения минимальных коэффициентов запасов прочности следует увеличить до SHmin = 1,25 и SHmin = 1,35 соответственно.
Коэффициент долговечности ZN принимают в зависимости от отношения суммарного и базового чисел циклов перемены напряжений в зубьях NK и NHlim по следующим формулам:

ZN = при , (2.7)
но не более 2,6 для однородной структу­ры материала и 1,8 для поверхностного упрочнения;

ZN = при NK > , (2.8)
но не менее 0,75,

где NHlim – базовое число циклов перемены напряжений;

NК – суммарное число циклов перемены напряжений.
Суммарное число циклов перемены напряжений NК при постоянной нагрузке определяется следующим образом (и для шестерни, и для колеса):

, (2.9)

где с – число зубчатых колес, сцепляющихся с рассчитываемым зубчатым колесом (в данном задании с = 1);

n – частота вращения рассчитываемого зубчатого колеса, об/мин;

t – срок службы передачи, в часах.
Если не задано конкретное число часов работы передачи, а задан срок работы передачи в годах, то t определятся по формуле

, (2.10)

где L – срок службы в годах;

КГОД, КСУТ– коэффициенты использования передачи в течение года и суток соответственно.
Базовое число циклов перемены напряжений определяется по графику, представленному на рис. 2.6.




, млн циклов



Рис. 2.6. График для определения базового числа циклов перемены напряжений


Используя все найденные параметры, определяют межосевое расстояние. Полученное межосевое расстояние при необходимости округляется до стандартного значения:

  • РЯД 1 – 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400;

  • РЯД 2 – 71, 90, 112, 140, 180, 225, 280, 355, 450.

Значения первого ряда следует предпочитать значениям второго.


2.2. Проектирование передачи



1. Ориентировочно значение модуля при проектировочном расчете зубчатых передач можно принять, мм:
– при твердости Н350НВ m= (0,01...0,02)aw; (2.11)
– при твердости H45HRCэ т = (0,016...0,0315)aw. (2.12)
По ГОСТ 9563–80 принимают стандартный нормальный модуль:

  • РЯД 1 – 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16;

  • РЯД 2 – 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14.

Значения первого ряда следует предпочитать значениям второго.
2. Определяется суммарное число зубьев и число зубьев шестерни и колеса:

– предварительно принимают угол наклона зубьев и определяют суммарное zC число зубьев шестерни z1 и колеса z2:

; (2.13)

; (2.14)
– полученные значения чисел зубьев округляем до целого числа:

z2 = zС z1. (2.15)
3. Определяются действительное передаточное число и его погрешность:

. (2.16)

Погрешность передаточного числа не должна превышать 3 %.
4. Уточняем значение угла β:

, (2.17)

. (2.18)

Значение угла наклона зубьев необходимо вычислять с точностью до секунд.
5. Далее определяются основные размеры шестерни и колеса.

Делительные диаметры шестерни и колеса:

. (2.19)
6. Проверку полученных диаметров можно провести с помощью формулы

. (2.20)

Проверкой должно быть установлено, что межосевое расстояние сходится со значением, принятым ранее.
7. Диаметры вершин зубьев определяются по формулам:

, . (2.21)
Диаметры впадин:

, , (2.22)

где
x – коэффициент смещения, мм.
8. Ширина колеса определяется по формуле, мм:

. (2.23)

Полученное значение ширины колеса округляем до нормального линейного размера.
9. Ширина шестерни определяется по формуле, мм:

b1 = b2 + (5...10). (2.24)

Полученное значение ширины округляем до нормального линейного размера.

10. Определим окружную скорость зубчатых колес по формуле, м/с:

. (2.25)
11. По окружной скорости колес с учетом рекомендации табл. 2.6 назначают степень точности зубчатых колес.
Таблица 2.6

Нормы точности зубчатых колес

Степень точности по ГОСТ 1643–81

Окружная скорость, м/с

Прямые зубья

Непрямые зубья

5 и выше

 15

 30

6

15

30

7

10

15

8

6

10

9

2

4



2.3. Проверочный расчет на контактную выносливость активных поверхностей зубьев

А. Определение расчетного контактного напряжения



Контактная выносливость устанавливается сопоставлением, действующим в полюсе зацепления расчетного и допускаемого контактного напряжений:

, (2.26)

где KH – коэффициент нагрузки;