Файл: ВсяМехЛАБраб2части.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 15.04.2024

Просмотров: 398

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Филимонова л.В., Боброва т.М.

Основные теоретические сведения

Краткая теория вопроса и метода.

Краткая теория вопроса.

Описание метода гидростатического взвешивания.

Краткая теория вопроса.

Описание метода Стокса.

Краткая теория вопроса и метода измерения.

Краткая характеристика методов.

Описание экспериментальной установки.

Краткая теория волн.

Скорость звука как волны.

Описание метода.

Часть 2

Краткое знакомство и машиной Атвуда.

Вопросы к отчету.

Краткая теория вопроса.

Описание метода и установки

Вопросы к отчету.

Краткая теория вопроса.

Описание прибора и метода

Вопросы к отчету.

Описание прибора и теория метода.

Вопросы к отчету:

Краткая теория вопроса.

Описание установки

Краткая теория вопроса.

Описание установки и метода

Вопросы к отчету.

Алгоритм обработки результатов многократных измерений.

Обобщенный план экспериментальной деятельности студента:

Содержание:

399770 Г.Елец, ул. Комунаров, 28.

Также, есть и точки с максимальной амплитудой – пучности. Расстояние между двумя соседними неподвижными точками (узлами), или между соседними пучностями, равно половине длины проходящей волны.

Вблизи узлов имеет место максимум деформации, а значит и максимум потенциальной энергии. Вблизи пучностей стоячей волны находятся пучности скорости, а значит максимальна энергия кинетическая. Т.о. дважды за период происходит переход энергии от каждого узла к соседним с ним пучностям и обратно. В случае стоячей волны переноса энергии нет, т.к. падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. Полная энергия стоячей волны, заключенная между узловыми точками, остается постоянной. Лишь в пределах расстояний, равных , происходят взаимные превращения кинетической энергии в потенциальную и обратно.


Скорость звука как волны.

Звуковые волны имеют частоты в пределах 16-20 000 Гц. Источником звука может быть всякое тело, колеблющееся в упругой среде со звуковой частотой.

В истории развития физических знаний известны различные формулы, по которым определялась в разные времена скорость звука :

1) формула Ньютона (6) – выводится в предположении, что процесс распространения звука в газе можно считать изотермическим; здесь- давление газа,- плотность газа; ее результаты расходятся с экспериментом.

2) формула Лапласа (7) или, где- термодинамический коэффициент, равный отношению удельных теплоемкостей газа; формула выводится на основе утверждения, что процесс распространение акустических волн являетсяадиабатическим; формула (7) соответствует опытным данным.

Т.к. плотность газа зависит от температуры: , где- плотность газа при 00С, t – температура в 0С, - коэффициент расширения газа (), следовательно,

(8).

При 00С скорость звука в воздухе =331,5 м/с.

Что же представляет собой скорость звука? Скорость звука есть скорость распространения упругих колебаний в среде – твердой, жидкой или газообразной.

Пусть резким движением поршня в трубе вы создали уплотненный слой воздуха. А потом вернули поршень в первоначальное положение. Подобно сжатой пружине, слой воздуха начнет расширяться в обе стороны, заполняя образовавшееся разрежение слева и вызывая сгущение справа. Таким образом сгущение будет перемещаться вдоль оси трубы все правее и правее. Распространяется сгущение, а не частицы воздуха. От одного конца трубы до другого. Каждая частица лишь колеблется влево-вправо около положения равновесия. Скорость распространения сгущенного состояния и будет скоростью распространения упругой деформации среды..


Если периодически повторять движение поршня вперед и назад, то в воздушной среде образуется ряд последовательных сгущений и разряжений, бегущих вдоль оси трубы. Такое движение называется волновым.

Расстояние от одного сгущенного состояния до следующего, т.е. расстояние между двумя последовательными точками среды, находящимися в одной фазе, называется длиной волны, а число волн, проходящих через точку в 1 с, - частотой колебательного движения .

Для звуковых волн частота звука является характеристикой звукового ощущения, известного под названием высоты звука или тона (до, ре, ми и т.д.). чем больше частота, тем выше тон.

Сила звука данного источника объективно определяется мощностью колебаний и пропорциональна квадрату их амплитуды.

Однако при субъективной оценке громкости звука играет роль и высота звука, так что звуки. Значительно отличающиеся по высоте, дают разные ощущения громкости.

По длине и частоте волны можно вычислить скорость звука:(9).

В теории волн различают понятия фазовой и групповой скорости. Первая равна скорости распространения фазы в пространстве (рис.2). Это – только математическое понятие.

Также как нельзя практически выделить строго монохроматический луч света с соответствующей ему строго определенной длиной волны, а всегда приходится иметь дело с пучком, представляющим собой смесь близко расположенных длин волн, так нельзя и получить звуковой волны строго определенной частоты. Кроме того, для передачи сигнала волна должна быть модулирована: необходимо, чтобы были разрывы и изменения амплитуды. При распространении звука такая модуляция происходит всегда: всякий источник звука посылает не одну волну строго определенной частоты, а несколько, хоть немного отличающихся друг от друга, волн. Как известно, при \том происходит интерференция, приводящая к биениям: волна разбивается на отдельные участки – пакеты. Энергия концентрируется в местах наибольших амплитуд и может восприниматься ухом или другим приемником как определенный сигнал. При этом в некоторых случаях максимум перемещается по пакету со скоростью, отличной от фазовой (рис.3).


Скорость сигнала или скорость звука есть скорость распространения подобных групп волн и поэтому называется групповой скоростью. С этой скоростью распространяется и энергия звука.

Для звуковых волн в воздухе и в воде групповая и фазовая скорости одинаковы. Это вызвано тем, что скорость звука, являясь скоростью распространения упругих деформаций среды, не зависит от частоты. Звуки любого типа распространяются одинаково. Разница лишь в громкости. Т.е. для звуковых волн не наблюдается дисперсия. Поэтому не оговаривают о фазовой или групповой скорости идет речь, а говорят просто о скорости звука.


Описание метода.

Генератор звуковых волн ЗГ-2, соединенный с микрофоном, генерирует в последнем волны установленной на приборе частоты. Микрофон установлен в одном основании цилиндрической металлической трубки и служит местом (точкой) возникновения звуковых волн, распространяющихся далее по трубке. Другим основание цилиндра служит поверхность поршня. Перемещая поршень по трубке, мы меняем расстояниеиз формулы (8). Когда телефон по отношению к поршню (место отражения волны. т.е. начальный узел) занимает положение, соответствующее точке с максимальным (нулевым) значением амплитуды, мы слышим максимальную (нулевую) громкость звука.

Вопросы к допуску.

  1. Что представляет собой стоячая волна? Как она образуется? Как ее длина волны связана с длиной исходной проходящей волны?

  2. Какую область занимает стоячая волна в данном эксперименте?

  3. Где начинается отраженная волна? Какова ее начальная фаза?

  4. Запишите зависимость амплитуды колебания точки стоячей волны от ее расстояния до источника волн? Поясните входящие в формулу обозначения.

  5. Как связана длина проходящей волны с расстоянием между соседними пучностями?

  6. Чем определяется величина длины проходящей волны, исследуемой в опыте?

  7. Чем нужно руководствоваться при выборе частоты звука на генераторе?

  8. Каково условие максимальной слышимости звука в данном опыте? Сделать схематический чертеж взаимного расположения частей экспериментальной установки и рисунок соответствующей стоячей волны (подобно рис.1). Аналогично для момента отсутствия слышимости.

  9. От чего зависит скорость звука в газе?

  10. От чего зависит величина получаемого в нашем опыте значения скорости звука?

  11. Привести и пояснить расчетные формулы для длины звуковой волны и для скорости звука, используемые в данной работе.

  12. Выполнить задание 1.

  13. Какая характеристика звука меняется при вращении ручки регулятора выходного напряжения?