ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.12.2023
Просмотров: 377
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
2.1. Основные цели и задачи прикладного корреляционно-регрессионного анализа
2.2. Постановка задачи регрессии
2.4. Коэффициент корреляции, коэффициент детерминации, корреляционное отношение
3. Классическая линейная модель множественной регрессии
3.2. Оценивание коэффициентов КЛММР
Часто эконометрист сталкивается с ситуацией, когда к уже имеющейся выборке он хочет присоединить небольшую дополнительную порцию данных, но не знает, можно ли считать выборки регрессионно однородными.
Если необходимо выяснить, можно ли использовать одну и ту же модель для двух разных выборок данных или следует оценивать отдельные регрессии для каждой выборки, то можно воспользоваться тестом Чоу.
Рассмотрим модели:
(4.14)
(4.15)
Мы хотим проверить гипотезу
H0: ,
которая содержательно означает, что для двух имеющихся выборок из n1 и n2 наблюдений можно использовать одну и ту же регрессионную модель, т.е. выборки можно объединить.
Процедура Чоу для статистической проверки гипотезы H0 суть:
1. Строим МНК оценки регрессии (4.14) и вычисляем сумму квадратов остатков, которую обозначим . Строим МНК оценки регрессии (4.15) и вычисляем сумму квадратов остатков, которую обозначим .
2. Строим МНК оценки регрессии по объединенной (общей) выборке, содержащей в себе все наблюдения (числом n1+n2) обеих выборок и вычисляем сумму квадратов остатков, которую обозначим er.
3. Критическая статистика F вычисляется по формуле:
и имеет распределение Фишера с (k+1) и (n1+n22k2) степенями свободы. Если F > F, то нулевая гипотеза отвергается, и в этом случае мы не можем объединить две выборки в одну.
5. Временные ряды
5.1.Специфика временных рядов
Часто исследователь имеет дело с данными в виде временных рядов.
Совокупность наблюдений анализируемой величины , произведенных в последовательные моменты времени , называется временным рядом.
Иначе говоря, временной ряд – это упорядоченная во времени последовательность наблюдений.
Среди временных рядов выделяют одномерные, полученные в результате наблюдения одной, фиксированной характеристики исследуемого объекта, и, многомерные временные ряды как результат наблюдений нескольких характеристик одного исследуемого объекта в течение ряда моментов времени.
По времени наблюдения временные ряды делятся на дискретные и непрерывные. Дискретные ряды, в свою очередь, разделяются на ряды с равноотстоящими и произвольными моментами наблюдения.
Временные ряды бывают детерминированными и случайными: первые получены как значения некоторой неслучайной функции, а вторые - как реализации случайной величины.
Стохастические временные ряды подразделяются на стационарные и нестационарные. Ряд y(t) называется стационарным (в узком смысле), если среднее, дисперсия и ковариации y(t) не зависят от t.
В дальнейшем, если не оговорено иначе, будем рассматривать одномерные, дискретные с равноотстоящими моментами наблюдений случайные временные ряды.
Природа временных рядов существенно отличается от природы пространственных данных, что проявляется в весьма специфических свойствах временных рядов. В своей работе исследователь должен учитывать эти особенности, основные из которых отображены в таблице 5.1.
Таблица 5.1
Особенности временных рядов
Характеристики наблюдений | Тип данных | |
Пространственные данные | Временные ряды | |
Порядок | Не существенен | Существенен |
Статистическая независимость | Независимы | Не являются статистически независимыми |
Функция распределения | Распределены одинаково | Распределены неодинаково |
Количество | Как правило, большое | Как правило, небольшое |
Наличие автокорреляции | Встречается нечасто | Встречается часто |
Значения элементов временного ряда формируются под воздействием ряда факторов, среди которых выделяют:
-
долговременные, формирующие в длительной перспективе общую тенденцию анализируемого признака. Эта тенденция описывается с помощью некоторой функции, называемой трендом (Т); -
сезонные, формирующие периодически повторяемые в определенное время года колебания анализируемого признака (S); -
циклические, формирующие изменения анализируемого в результате воздействия циклов экономической, демографической или астрофизической природы (С); -
случайные, не поддающиеся учету и регистрации, как результат воздействия случайных, внешних факторов (U).
Первые три составляющие часто объединяют в одну детерминированную и рассматривают модель ряда в виде yt=f(t)+ut, t. Изменение уровня f(t) со временем называют при этом трендом.
Предметом анализа временного ряда является выделение и изучение указанных компонент ряда, как правило в рамках одной из моделей ряда: либо аддитивной Y=T+C+S+U, либо мультипликативной Y=TCSU.
Некоторые составляющие могут отсутствовать в тех или иных рядах.
В результате анализа временного ряда необходимо определить, какие из неслучайных составляющих присутствуют в разложении ряда, построить для них хорошие оценки, подобрать модель, описывающую поведение остатков и оценить ее параметры.
5.2. Проверка гипотезы о существовании тренда
Для выявления факта наличия или отсутствия неслучайной составляющей f(t), то есть для проверки гипотезы о существовании тренда - Н0: Еy(t)=a=const, используют следующие критерии.
I. Критерий серий. Упорядочим члены ряда по возрастанию: y1, y2, ..., yt, ..., yn. Определим медиану ряда:
Образуем последовательность плюсов и минусов, соответствующую исходному ряду, по правилу: если yt>ymed, то yt соответствует плюс, если yt<ymed, то – минус. Под серией понимается последовательность подряд идущих плюсов и подряд идущих минусов. Подсчитаем общее число серий и протяженность самой длинной серии .
Если хотя бы одно из неравенств:
окажется нарушенным, то гипотеза Н0 отвергается с вероятностью ошибки , заключенной между 0,05 и 0,0975.
II. Критерий "восходящих" и "нисходящих" серий. Аналогично предыдущему критерию исследуется последовательность плюсов и минусов. Правило построения последовательности: если yt+1-yt>0, то yt соответствует плюс, если yt+1-yt<0, то – минус (если подряд идут несколько равных наблюдений, то во внимание принимается одно из них).
Если хотя бы одно из неравенств:
окажется нарушенным, то гипотеза Н0 отвергается с вероятностью ошибки , заключенной между 0,05 и 0,0975. Величина 0 определяется в зависимости от n:
n | n26 | 26<n153 | 153<n1170 |
0 | 0=5 | 0=6 | 0=7 |
III. Критерий квадратов последовательных разностей (критерий Аббе). Если есть основания полагать, что разброс наблюдений yt относительно своих средних значений подчиняется нормальному закону распределения вероятностей, то применяется критерий Аббе - см. [1], с. 801-802.
5.3. Аналитическое выравнивание временных рядов, оценка параметров уравнения тренда
Метод обработки временных рядов, целями которого является устранение случайных колебаний и построение аналитической функции, характеризующей зависимость уровней ряда от времени – тренда, называется аналитическим выравниванием временного ряда.
Суть метода аналитического выравнивания состоит в том, чтобы заменить фактические уровни временного ряда на теоретические . Расчет осуществляется по некоторому формализованному уравнению, принятому за математическую модель тренда. Для построения трендов чаще всего применяют такие функции, как:
-
линейная: ; -
степенная: ; -
гиперболическая: ; -
экспоненциальная: ; -
полиномы второго и более высоких порядков: .
Расчет параметров тренда производится методом МНК. В качестве зависимой переменной выступают фактические уровни ряда , а независимой переменной является время . Заметим, что для нелинейных трендов необходима процедура линеаризации, аналогичная рассмотренной в разделе 3.
Выбор функции тренда может быть осуществлен несколькими способами. Наиболее простым считается тот, в ходе которого анализируют цепные абсолютные приросты (первые разности уровней ряда) , абсолютные ускорения уровней ряда (вторые разности ряда) и цепные коэффициенты роста .
Если примерно одинаковы , то ряд имеет линейный тренд, если же примерно постоянны , то для описания тенденции временного ряда следует выбрать параболу второго порядка, и, если примерно равны , необходимо использовать экспоненциальную или степенную функции.
Пример 1.9 Рассчитаем параметры уравнения тренда по следующим данным:
Таблица 5.2
Темпы роста номинальной месячной заработной платы (за 10 месяцев 1999г., % к уровню декабря 1998г.)
Месяц | Темп роста номинальной заработной платы | Месяц | Темп роста номинальной заработной платы |
Январь | 82,9 | Июнь | 121,6 |
Февраль | 87,3 | Июль | 118,6 |
Март | 99,4 | Август | 114,1 |
Апрель | 104,8 | Сентябрь | 123,0 |
Май | 107,2 | Октябрь | 127,3 |