Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 498

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВЕДЕНИЕУчебно-методическое пособие знакомит студентов с основными понятиями о теории вероятностей, случайных процессах, статистическом оценивании и проверке гипотез, статистических методах обработки экспериментальных данных, математических методах, принятых в биологических исследованиях.Пособие состоит из четырех разделов: Введение в теорию вероятностей. Основные понятия и термины статистики. Статистические методы обработки экспериментальных данных. Компьютерная обработка данных анализа в специализированной программе EasyStatistics. Введение в теорию вероятностей дает представление о случайных событиях, вероятности и ее свойствах, случайных величинах и основных теоретических распределениях случайных величин.При изучении второго раздела разбираются понятия о совокупности и выборке, классификации признаков, дается представление о схемах научного эксперимента и научных гипотезах, достоверности и надежности результатов.Третий раздел знакомит со статистическими методами описания групп, способами их сравнения в зависимости от характера распределения исходных данных. Большое внимание уделено корреляционно-регрессионному анализу, лежащему в основе многомерных методов анализа. Разбираются широко распространенные в биологических исследованиях методы оценки динамики, цикличности и классификации. При описании каждого метода описываются условия, необходимые для проведения статистической обработки, и возможные трудности в интерпретации полученных показателей. Четвертый раздел посвящен практическому применению методов статистической обработки данных с помощью специализированной программы «Статистическая обработка медико-биологических данных» (EasyStatistics). Данная программа разработана автором пособия (Роспатент №2003612171) и предназначена для статистической обработки данных биологических и медицинских исследований и, в первую очередь, нацелена на выполнение курсовых и дипломных работ студентами. В то же время это не замена уже существующим мощным статистическим пакетам, таким как Statistica, а скорее дополнение, помогающее оценить возможности манипулирования данными и принципы работы с основными статистическими методами. Каждый раздел содержит список вопросов и заданий для самопроверки.Пособие также содержит список учебно-методических материалов, рекомендуемых для самостоятельной работы студентов.РАЗДЕЛ I. ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙЗакономерности, которым подчиняются случайные события, изучаются в разделах математики, которые называются теорией вероятностей и математической статистикой.Понятие о случайном событииОпыт, эксперимент, на­блюдение явления называются испытанием. Испытаниями, напри­мер, являются: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесенными на каждую грань числом очков — от одного до шести).Результат, исход испытания называется событием. Для обозначения событий используются большие буквы ла­тинского алфавита: А, В, С и т. д.Два события называются совместимыми, если появление одного из них не исключает появление другого в одном и том же испытании.Испытание: однократное бросание игральной кости. Событие А — появление четырех очков. Событие В— появле­ние четного числа очков. События Аи В совместимые.Два события называются несовместимы­ми, если появление одного из них исключает появление другого в одном и том же испытании.Испытание: однократное бросание монеты. Собы­тие А — выпадение герба, событие В — выпадение цифры. Эти события несовместимы, так как появление одного из них исключает появление другого.Несовместимость более чем двух событий означает их попарную несовместимостьИспытание: однократное бросание игральной кости. Пусть события А1, А2, А3, А4, А5, А6 соответственно выпа­дение одного очка, двух, трех и т. д. Эти события являются несов­местимыми..Два события А и В называются проти­воположными, если в данном испытании они несовместимы и одно из них обязательно происходит.Событие, противоположное событию А, обозначают через А.Испытание: бросание монеты. Событие А — выпадение герба, событие В — выпадение цифры. Эти события противоположны, так как исходами бросания могут быть лишь они, и появление одного из них исключает появление другого, т. е. А = В или А = В.Событие называется достоверным, если в данном испытании оно является единственно возможным его ис­ходом, и невозможным, если в данном испытании оно заведомо не может произойти.Испытание: извлечение шара из урны, в которой все шары белые. Событие А — вынут белый шар — достоверное событие; событие В — вынут черный шар — невозможное событие.Достоверное и невозможное события в данном испытании являются противоположными.Событие А называется случайным, если оно объективно может наступить или не наступить в данном испы­тании.Выпадение шести очков при броса­нии игральной кости — случайное событие. Оно может наступить, но может и не наступить в данном испытании.Прорастание девяноста восьми зерен пшеницы из ста — случайное событие. Это событие может наступить, но, может быть, прорастет зерен больше или меньше.Классическое определение вероятностиВсякое испыта­ние влечет за собой некоторую совокупность исходов — резуль­татов испытания, т. е. событий. Во многих случаях возможно пере­числить все события, которые могут быть исходами данного испы­тания.Говорят, что совокупность событий обра­зует полную группу событий для данного испытания, если его ре­зультатом обязательно становится хотя бы одно из них.События Ul, U2, ..., Un , образующие полную группу попарно несовместимых и равновозможных собы­тий, будем называть элементарными событиями.Вернемся к опыту с подбрасыванием игральной кости. Пусть Ui — событие, состоящее в том, что кость выпала гранью с цифрой i. Как уже отмечалось, события U1, U2, …, U6 образуют полную группу попарно несовместимых событий. Так как кость предполагается однородной и симметрич­ной, то события U1, U2, …, U6 являются и равновозможными, т. е. элементарными.Событие А называется благоприят­ствующим событию В, если наступление события А влечет за собой наступление события В.Пусть при бросании игральной кости события U2, U4 и U6 — появление соответственно двух, четырех и шести очков и А — событие, состоящее в появлении четного очка; собы­тия U2, U4 и U6 благоприятствуют событию А.Классическое определение вероятностиВероятностью Р (А) события А называется отношение m/n числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т. е. Вычислим вероятность выпадения герба при одном бросании монеты. Очевидно, событие А — выпадение герба и событие В — выпадение цифры — образуют полную группу несовместимых и равновозможных событий для данного испытания. Значит, здесь n = 2. Событию А благоприятствует лишь одно со­бытие — само А, т. е. здесь m = 1. Поэтому Р(А) = 0,5.Найти вероятность того, что при бросании иг­ральной кости выпадет число очков, делящееся на 2 (событие А). Число элементарных событий здесь 6. Число благоприятст­вующих элементарных событий 3 (выпадение 2, 4 и 6). Поэтому .Из приведенного классического определения вероятности вы­текают следующие ее свойства.1. Вероятность достоверного события равна единице.Действительно, достоверному событию должны благоприят­ствовать все n элементарных событий, т. е. m = n и, следовательно, P(A)=1.2. Вероятность невозможного события равна нулю. В самом деле, невозможному событию не может благоприят­ствовать ни одно из элементарных событий, т. е. m = 0, откуда P(A)=0.3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных событий. Поэтому в этом случае 0 < m < n , значит, 0 <= Р (А)<= 1.Относительная частота.Статистическое определение ве­роятности.Классическое определение вероятности не являет­ся пригодным для изучения произвольных случайных событий. Так, оно неприемлемо, если результаты испытания не равновозможны. Например, при бросании неправильной игральной кости выпадение ее различных граней не равновозможно.В таких случаях используется так называемое статистическое определение вероятности.Пусть произведено n испытаний, при этом некоторое событие А наступило m раз. Число m называется абсолютной часто­той (или просто частотой) события А, а отношение называется относительной частотой события А.При транспортировке из 10 000 арбузов испор­тилось 26. Здесь m= 26 — абсолютная частота испорченных ар­бузов, а P*(A)=0,0026 относительная.Результаты многочисленных опытов и наблюдений помогают заключить: при проведении серий из n испытаний, когда число n сравнительно мало, относительная частота Р*(A) принимает зна­чения, которые могут довольно сильно отличаться друг от друга. Но с увеличением n — числа испытаний в сериях — относитель­ная частота Р*(А) приближается к некоторому числу Р(А), стабилизируясь возле него и принимая все более устойчивые значения.Было проведено 10 серий бросаний монеты, по 1000 бросаний в каждой. Относительные частоты выпадения герба оказались равными 0,501; 0,485; 0,509; 0,536; 0,485; 0,488; 0,500;0,497; 0,494; 0,484. Эти частоты группируются около числа 0,5Статистическое определение вероят­ностиВероятностью события А в данном испытании называется число Р (А), около которого группируются значения относительной частоты при больших n.По официальным данным шведской статистики, относительные частоты рождения девочек по месяцам 2007 г. харак­теризуются следующими числами (расположены в порядке сле­дования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,473. Эти частоты группируются около числа 0,482.Таким образом, относительная частота события приближенно совпадает с его вероятностью, если число испытаний достаточно велико. Геометрическая вероятностьДо этого мы рассматривали возможные эксперименты, в которых реализуется конечное множество событий. Однако существует большое количество задач, для которых такое предположение не является справедливым. При решении таких задач предполагается, что множество реализуемых событий может быть представлено в виде некоторой геометрической фигуры, а конкретное событие соответствует точке заданной части этой фигуры. В качестве события A можно рассмотреть любую подобласть области Ω. Например, фигуру внутри исходной фигуры на плоскости или отрезок, лежащий внутри исходного отрезка на прямой.Заметим, что элементарным событием на таком множестве может быть только точка. В самом деле, если множество содержит более одной точки, его можно разбить на два непустых подмножества. Следовательно, такое множество уже неэлементарно.Теперь определим вероятность. Тут тоже все легко: вероятность «попадания» в каждую конкретную точку равна нулю. Иначе получим бесконечную сумму одинаковых положительных слагаемых (ведь элементарные события равновероятны), которые в сумме больше P(Ω) = 1.Итак, элементарные события для бесконечных областей Ω — это отдельные точки, причем вероятность «попадания» в любую из них равна нулю. Но как искать вероятность неэлементарного события, которое, подобно Ω, содержит бесконечное множество точек? Вот мы и пришли к определению геометрической вероятности.Геометрическая вероятность события A, являющегося подмножеством множества Ω точек на прямой или плоскости — это отношение площади фигуры A к площади всего множества Ω.Мишень имеет форму окружности. Какова вероятность попадания в ее правую половину, если попадание в любую точку мишени равновероятно? При этом промахи мимо мишени исключены. Взглянем на картинку: нас устроит любая точка из правого полукруга. Очевидно, площадь S(A) этого полукруга составляет ровно половину площади всего круга, поэтому имеем P=0,5Студент и студентка договариваются о встрече на заданном промежутке времени Т. Тот, кто приходит первым ожидает другого в течение времени tВ качестве множества элементарных событий рассмотри квадрат, состоящий из точек (x,y), 0<=x<=T, 0<=y<=T, где x и у время прихода его и ее.Благоприятсвующие события образуют точки, для которых |x-y|<t, т.е. точки квадрата между прямыми y=x-t, y=x+t. Площадь получающейся фигуры равна T2-(T-t)2, а площадь всего квадрата – Т2. Отсуда искомая вероятность Свойства вероятностейСложение вероятностей несовместимых событийСуммой событий А и В называется собы­тие С = А + В, состоящее в наступлении по крайней мере одного из событий А или В.Стрельба двух стрелков (каждый де­лает по одному выстрелу). Событие А — попадание в мишень пер­вым стрелком, событие В — попадание в мишень вторым стрелком. Суммой событий А и В будет событие С = А + В, состоящее в попадании в мишень по крайней мере одним стрелком.Произведением событий А и В назы­вается событие С = АВ, состоящее в том, что в результате испыта­ния произошло и событие А, и событие В.Аналогично произведением конечного числа событий A1 А2, …, Ak называется событие А = А1 * A2 * ... * Ak, состоящее в том, что в результате испытания произошли все указанные события.В условиях предыдущего примера произведением событий А и В будет событие С = АВ, состоящее в попадании в мишень двух стрелков.Из определения непосредственно следует, что АВ = ВА.Вероятность суммы двух несовместимых событий А и В равна сумме вероятностей этих событий:Р (А + В) = Р (А) + Р (В). Следствие. Сумма вероятностей противоположных собы­тий А и А равна единице:Р(А) + Р(А

Коэффициент сопряженности Чупрова. Дальнейшим обоб-щением четырехпольных таблиц являются многопольные таблицы, для которых сопряженность наиболее часто оценивается по формуле, предложенной русским статистиком А. А. Чупровым. Прежде чем приводить ее рассмотрим несколько реальных ситуаций, когда такая оценка может потребоваться. Известно, например, что окраска тюльпанов связана с наличием определенных пигментов. Может представлять интерес вопрос о том, с какими именно пигментами преимущественно связана та или иная окраска цветка. Или другой пример. Окружающая гнездо полярной крачки обстановка может представлять собой зеленые растения, растения и гальку, пестрые камешки и т. д. При этом можно наблюдать самые разные по качеству гнезда: от его отсутствия до очень хорошо сделанного. В этом случае желательно знать, связано ли качество гнезда с какой-то одной или несколькими характеристиками окружающей среды. Общим для этих и других подобных задач является то, что в распоряжении экспериментатора оказываются данные о некотором множестве объектов, обладающих двумя признаками, причем каждый из признаков может иметь несколько градаций. В этом случае , где m - число разновидностей явления Х; k - число разновидностей явления Y, n – общее число объектов (m*k). Независимо то того, что каждый из описательных признаков, несмотря на разницу в численности его разновидностей, можно свести к альтернативному - только с двумя разновидностями, довольно часто в практике возникает необходимость работать с описательными признаками более двух разновидностей. В таких случаях необходимо при вычислении коэффициента корреляции составлять так называемую корреляционную таблицу (где X1,X2,...Xn - обозначают разновидность одного признака, а Y1, Y2... Yn - разновидности другого).При наличии такой схемы коэффициент корреляции находят по формуле: , где - коэффициент связи, m- число разновидностей явления Х; k - число разновидностей явления Y.Данный метод пригоден также и для экспрессной оценки связи между количественными (например возраст) и качествен-ными (например брак) параметрами.На практике (особенно в зоологии и ботанике) довольно часто встречаются другие меры измерения связи.



Техника вычисления относительных величин не трудна (она связана только с действием деления). При анализе же этих показателей часто допускаются ошибки. На некоторых из них следует остановиться.

Для того, чтобы проанализировать типы допускаемых ошибок, следует дать классификацию соответствующих показателей. В общей форме можно назвать 2 категории: показатели структуры и показатели соотношения.

Показатели структуры называются иначе экстенсивными показателями. Их можно разделить на 2 группы: экстенсивно-расчленительные и экстенсивно-указательные. Первые отражают выраженное в процентах соотношение между частью и целым, а вторые - выраженное также в процентах отношение между частями целого.

Из 500 случайно отобранных листьев 450 без повреждений, а остальные погрызены вредителями. В этом случае экстенсивно-расчленительный показатель равен (450/500)100=90 %. Этот процент, дающий представление о структуре совокупности, составляют целые. Экстенсивно-указательный показатель будет обозначать отношение целых к погрызенным: (450/50)100=900 %. Это число показывает, что на 100 погрызенных приходится 900 целых. Иногда экстенсивно-указательные величины вычисляются не в процентах. В приведенном выше примере (450/50)=9 эта цифра показывает, что на 1 испорченный вредителями лист приходится 9 целых. При экстенсивно-указательных величинах не имеет значения какая цифра будет в числителе, а какая в знаменателе. Во взятом примере можно дать отношение и в форме (50/450)=0,11. Изменится только толкование (на один целый приходится 0,11 испорченных).

Показатели соотношения называются также частотами, потому что они показывают частоту изучаемых явлений. Эти показатели можно разделить на 2 категории: интенсивные и координационные показатели. Интенсивные представляют собой соотношение между числом случаев некоторого события и средой, в которой это событие наступает. Координационные же представляют соотношение между числом случаев в двух явлениях, между которыми существует непрямая связь.

В городе Кемерове 100000 детей школьного возраста, население - 500000 человек, а число преподавателей 2000 человек. Требуется вычислить показатель, отражающий количество учеников в составе взрослого населения, и показатель обеспеченности населения учителями.


Так как событием является вступление ребенка в школьный возраст, а средой, в которой оно происходит, - население, то первый показатель будет равняться (100000/500000)1000=200 на 1000 населения.

Координационным показателем обеспеченности населения учителями является отношение между численностью населения и числом преподавателей. Он может быть вычислен двумя способами: (500000/2000)=225 или (2000/500000)1000=4. Толкование этих показателей таково: 1) один учитель приходится на 225 человек или 2) на 1000 человек населения приходится 4 преподавателя.

Предложенная классификация дает возможность лучше понять природу ошибок, допускаемых при вычислении относительных показателей.

Не следует забывать, что за вычисленными относительными величинами стоят конкретные данные. Иногда 1 % какого-либо показателя по своему значению равняется 10 % того же показателя, вычисленного для другого объекта. Поэтому при составлении статистических таблиц необходимо вместе с процентными числами приводить и абсолютные числа.

Показатели относительной доли не рекомендуется суммировать или усреднять (кроме некоторых специальных случаев).

Экстенсивно-указательные величины показывают процентное отношение между частями одного и того же целого, поэтому здесь возможен результат как меньший, так и больший 100 %. При вычислении этих показателей необходимо обращать внимание на следующее: окончательный результат различен в зависимости от того, какая из частей целого помещена в числитель, а какая в знаменатель. Рекомендуется в этом случае обращать внимание не на разность в процентах, а на их соотношения, а эти соотношения равны. В первом примере, 11,1(1) % и 900 %. В данном случае (900/100)=9 и (100/11,1(1))=9, т.е. в первом случае в 9 раз меньше, а во втором в 9 раз больше 100 %.

При вычислении интенсивных статистических показателей необходимо тщательно определять среду, в которой происходят изучаемые события. Это определение в некоторых случаях затрудняется тем, что не всегда можно количественно учесть среду. Например, при изучении показателя смертности необходимо знать не только число умерших, но и число заболевших. Однако, в то время как об умерших можно иметь точные данные (на каждого умершего составляется акт о смерти, в который вписана причина смерти), точное число заболевших часто не известно.

Иногда, чтобы избежать этой трудности, вычисление интенсивных статистических показателей заменяется вычислением экстенсивных, что приводит к ошибочным выводам.



Порядок изменения экстенсивных показателей не всегда соответствует порядку изменения интенсивных.

Следует быть особенно осторожными при вычислении показателей относительной доли при малочисленных выборках. Например, решено проверить воздействие определенного токсического вещества только в одном эксперименте. В этом случае возможны только 2 варианта: испытуемое животное или умрет, или не умрет, т.е. для оценки эффекта процент может быть или 0, или 100. В первом случае недооценивается действие испытуемого вещества, во втором оно переоценивается.

При пользовании процентами, являющимися мерой-эталоном сравнения, надо знать основание, в отношении которого они вычислены. Это особенно важно когда имеют дело с так называемой многократной манипуляцией и процентами.

Изучая некоторые явления при помощи интенсивных статистических показателей, сталкиваются с фактом, что величина этих показателей не зависит от структуры среды, в которой имеют место изучаемые явления. Так, например, смертность выше в тех населенных пунктах, в которых число детей раннего детского возраста и стариков больше, потому что среди них смертность наиболее высока.

При таких и подобных им случаях при сравнении интенсивных статистических показателей, вычисленных для среды с различной структурой, необходимо применять так называемый метод стандартизации.

Метод стандартизации ставит себе задачей унифицировать структуру среды, в отношении которой вычисляются интенсивные статистические показатели. Различаются прямой и косвенный методы стандартизации. Прямой метод применяется в тех случаях, когда известны абсолютные числа, характеризующие изучаемое явление, а также среду, в которой оно происходит.

Эти числа необходимо знать раздельно для частей той среды, которая оказывает влияние на величину интенсивных показателей.

Эти числа необходимо знать раздельно для частей той среды, которая оказывает влияние на величину интенсивных показателей. Косвенный метод применяется в тех случаях, когда известна только общая численность изучаемого явления.

Пример. В 1931г. смертность среди служителей культа и шахтеров в Уэльсе была такова

Возрастные группы

Духовенство

Шахтеры

Стандарт L

Стандартизованные коэффициенты




Всего

умерли

смертность

всего

умерли

смертность




духовенство

шахтеры

16-24

200

0

0

70000

259

3.7

22.0

0

81.4

25-34

2300

0

0

131000

524

4.0

22.0

0

88.00

35-44

3600

16

4.4

102000

663

6.5

17.9

78.76

116.35

45-54

4900

28

5.6

77000

939

12.2

16.4

91.84

200.08

55-64

5300

95

17.8

49000

1279

26.2

12.6

224.28

330.12

старше 65

6400

490

76.6

31000

3026

97.6

9.1

697.06

888.16

Всего

22700

629

27.7

460000

6690

14.5

100.0

1091.94

1704.11


Если по этим числам вычислить интенсивные статистические показатели смертности, то окажется, что у служителей культа она выше P1=27.7 на 1000 человек (629/22700)*1000; а у шахтеров она ниже P2=14.5=(6690/ /460000)*1000. Однако эти показатели выведены для профессий имеющих различный возрастной состав. Если вычислить показатели смертности для отдельных возрастных групп, то окажется, что смертность шахтеров гораздо выше. Следовательно необходимо применить метод стандартизации для того, чтобы унифицировать возрастную структуру этих двух групп населения. Для использования прямого метода стандартизации необходимо избрать некоторый условный стандарт. В качестве такого стандарта в данном случае избран возрастной состав мужского населения Уэльса в возрасте 16 лет и старше. После этого рассчитываются стандартизованные коэффициенты для отдельных возрастных групп по формуле (P*L).

Эти коэффициенты исчисляются отдельно для обоих групп населения: полученные таким образом цифры суммируются и делятся на 100. Получаются стандартизованные коэффициенты смертности, в которых устранено влияние различной возрастной структуры. В данном примере стандартизованный коэффициент смертности служителей культа составляет 10.92 на 1000, а шахтеров 17.04 на 1000. Следовательно, первоначальное заключение должно быть изменено.

В научных исследованиях применяют два вида статистического исследования: сплошное и выборочное. При выборочном исследовании наблюдение ведется только за частью случаев, входящих в объект исследования, а полученные результаты обобщаются применительно ко всем случаям. Выборочные исследования имеют ряд преимуществ: они дешевле, проводятся в более короткие сроки, а в некоторых случаях являются единственной возможной формой исследования. Однако, так как эти наблюдения не являются сплошными, в них всегда имеется некоторая неточность, называемая ошибкой репрезентативности.

При наблюдении над 100 непреднамеренно подобранными студентами было установлено, что 90 из них любят конфеты (т.е. 90 %) . Так как эта величина получена при относительно малом количестве человек, то возникает вопрос: если провести другие такие же наблюдения, будет ли получен тот же процент.

Очевидно - нет. Следовательно, если поставить вопрос о количестве любителей сладкого, то дать на него ответ в виде точно определенного процента нельзя, можно лишь указать интервал, в границах которого находится интересующий исследователя процент. Этот интервал определяется следующим образом. Его нижняя граница равна Р-, а верхняя Р+, где Р - полученный процент, - размер неточности, допущенной вследствие несплошного характера наблюдения. Эту величину находят по следующей формуле:


, где n - число наблюдаемых случаев, Р - найденный процент; t - в этом случае представляет собой так называемый доверительный коэффициент. При вероятности Р=0,95 (t=1,96), при Р=0,99 (t=2,58).

В использованном примере при доверительной вероятности Р=0,95 и t=1,96.

Видоизменяя формулу, например, можно рассчитать необходимое число наблюдений для получения определенного размера неточности: .

В условиях предыдущей задачи найти число наблюдений, чтобы ошибка не превышала 4 %



Вопросы для самопроверки:


  1. Приведите примеры, которые, как вам кажется, иллюстрируют неправильные применения расчета средних величин.

  2. Может ли оказаться что: а) значение дисперсии равно значению стандартного отклонения? б) значение дисперсии меньше значения стандартного отклонения?

  3. Как изменения ряда экспериментальных данных воздействуют на среднее?

  4. Как соотносятся среднее, мода и медиана для распределений смещенных влево (вправо)?

  5. Приведите примеры неправильного использования процентов.

  6. Рыбак за час поймал 20 рыб, из которых 8 караси. Определите с 95% вероятностью диапазон времени, которое он затратит на поимку 20 карасей.


Сравнение двух независимых групп
Т критерий Стьюдента

Пусть проверяемая гипотеза H0 состоит в том, что X1=M, а альтернативная гипотеза H1 состоит в том, что X1M.

Если это известное значение равно M, то , где Sx – это выборочное стандартное отклонение.

Показано, что если H0 справедлива, то t в выражении имеет t-распределение Стьюдента с n-1 степенями свободы. Если выбрать уровень значимости (вероятность отбросить нулевую гипотезу) равным , то т. к. распределение Стьюдента симметрично, (1-) часть площади под кривой этого распределения будет заключена между точками