Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 497

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВЕДЕНИЕУчебно-методическое пособие знакомит студентов с основными понятиями о теории вероятностей, случайных процессах, статистическом оценивании и проверке гипотез, статистических методах обработки экспериментальных данных, математических методах, принятых в биологических исследованиях.Пособие состоит из четырех разделов: Введение в теорию вероятностей. Основные понятия и термины статистики. Статистические методы обработки экспериментальных данных. Компьютерная обработка данных анализа в специализированной программе EasyStatistics. Введение в теорию вероятностей дает представление о случайных событиях, вероятности и ее свойствах, случайных величинах и основных теоретических распределениях случайных величин.При изучении второго раздела разбираются понятия о совокупности и выборке, классификации признаков, дается представление о схемах научного эксперимента и научных гипотезах, достоверности и надежности результатов.Третий раздел знакомит со статистическими методами описания групп, способами их сравнения в зависимости от характера распределения исходных данных. Большое внимание уделено корреляционно-регрессионному анализу, лежащему в основе многомерных методов анализа. Разбираются широко распространенные в биологических исследованиях методы оценки динамики, цикличности и классификации. При описании каждого метода описываются условия, необходимые для проведения статистической обработки, и возможные трудности в интерпретации полученных показателей. Четвертый раздел посвящен практическому применению методов статистической обработки данных с помощью специализированной программы «Статистическая обработка медико-биологических данных» (EasyStatistics). Данная программа разработана автором пособия (Роспатент №2003612171) и предназначена для статистической обработки данных биологических и медицинских исследований и, в первую очередь, нацелена на выполнение курсовых и дипломных работ студентами. В то же время это не замена уже существующим мощным статистическим пакетам, таким как Statistica, а скорее дополнение, помогающее оценить возможности манипулирования данными и принципы работы с основными статистическими методами. Каждый раздел содержит список вопросов и заданий для самопроверки.Пособие также содержит список учебно-методических материалов, рекомендуемых для самостоятельной работы студентов.РАЗДЕЛ I. ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙЗакономерности, которым подчиняются случайные события, изучаются в разделах математики, которые называются теорией вероятностей и математической статистикой.Понятие о случайном событииОпыт, эксперимент, на­блюдение явления называются испытанием. Испытаниями, напри­мер, являются: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесенными на каждую грань числом очков — от одного до шести).Результат, исход испытания называется событием. Для обозначения событий используются большие буквы ла­тинского алфавита: А, В, С и т. д.Два события называются совместимыми, если появление одного из них не исключает появление другого в одном и том же испытании.Испытание: однократное бросание игральной кости. Событие А — появление четырех очков. Событие В— появле­ние четного числа очков. События Аи В совместимые.Два события называются несовместимы­ми, если появление одного из них исключает появление другого в одном и том же испытании.Испытание: однократное бросание монеты. Собы­тие А — выпадение герба, событие В — выпадение цифры. Эти события несовместимы, так как появление одного из них исключает появление другого.Несовместимость более чем двух событий означает их попарную несовместимостьИспытание: однократное бросание игральной кости. Пусть события А1, А2, А3, А4, А5, А6 соответственно выпа­дение одного очка, двух, трех и т. д. Эти события являются несов­местимыми..Два события А и В называются проти­воположными, если в данном испытании они несовместимы и одно из них обязательно происходит.Событие, противоположное событию А, обозначают через А.Испытание: бросание монеты. Событие А — выпадение герба, событие В — выпадение цифры. Эти события противоположны, так как исходами бросания могут быть лишь они, и появление одного из них исключает появление другого, т. е. А = В или А = В.Событие называется достоверным, если в данном испытании оно является единственно возможным его ис­ходом, и невозможным, если в данном испытании оно заведомо не может произойти.Испытание: извлечение шара из урны, в которой все шары белые. Событие А — вынут белый шар — достоверное событие; событие В — вынут черный шар — невозможное событие.Достоверное и невозможное события в данном испытании являются противоположными.Событие А называется случайным, если оно объективно может наступить или не наступить в данном испы­тании.Выпадение шести очков при броса­нии игральной кости — случайное событие. Оно может наступить, но может и не наступить в данном испытании.Прорастание девяноста восьми зерен пшеницы из ста — случайное событие. Это событие может наступить, но, может быть, прорастет зерен больше или меньше.Классическое определение вероятностиВсякое испыта­ние влечет за собой некоторую совокупность исходов — резуль­татов испытания, т. е. событий. Во многих случаях возможно пере­числить все события, которые могут быть исходами данного испы­тания.Говорят, что совокупность событий обра­зует полную группу событий для данного испытания, если его ре­зультатом обязательно становится хотя бы одно из них.События Ul, U2, ..., Un , образующие полную группу попарно несовместимых и равновозможных собы­тий, будем называть элементарными событиями.Вернемся к опыту с подбрасыванием игральной кости. Пусть Ui — событие, состоящее в том, что кость выпала гранью с цифрой i. Как уже отмечалось, события U1, U2, …, U6 образуют полную группу попарно несовместимых событий. Так как кость предполагается однородной и симметрич­ной, то события U1, U2, …, U6 являются и равновозможными, т. е. элементарными.Событие А называется благоприят­ствующим событию В, если наступление события А влечет за собой наступление события В.Пусть при бросании игральной кости события U2, U4 и U6 — появление соответственно двух, четырех и шести очков и А — событие, состоящее в появлении четного очка; собы­тия U2, U4 и U6 благоприятствуют событию А.Классическое определение вероятностиВероятностью Р (А) события А называется отношение m/n числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т. е. Вычислим вероятность выпадения герба при одном бросании монеты. Очевидно, событие А — выпадение герба и событие В — выпадение цифры — образуют полную группу несовместимых и равновозможных событий для данного испытания. Значит, здесь n = 2. Событию А благоприятствует лишь одно со­бытие — само А, т. е. здесь m = 1. Поэтому Р(А) = 0,5.Найти вероятность того, что при бросании иг­ральной кости выпадет число очков, делящееся на 2 (событие А). Число элементарных событий здесь 6. Число благоприятст­вующих элементарных событий 3 (выпадение 2, 4 и 6). Поэтому .Из приведенного классического определения вероятности вы­текают следующие ее свойства.1. Вероятность достоверного события равна единице.Действительно, достоверному событию должны благоприят­ствовать все n элементарных событий, т. е. m = n и, следовательно, P(A)=1.2. Вероятность невозможного события равна нулю. В самом деле, невозможному событию не может благоприят­ствовать ни одно из элементарных событий, т. е. m = 0, откуда P(A)=0.3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных событий. Поэтому в этом случае 0 < m < n , значит, 0 <= Р (А)<= 1.Относительная частота.Статистическое определение ве­роятности.Классическое определение вероятности не являет­ся пригодным для изучения произвольных случайных событий. Так, оно неприемлемо, если результаты испытания не равновозможны. Например, при бросании неправильной игральной кости выпадение ее различных граней не равновозможно.В таких случаях используется так называемое статистическое определение вероятности.Пусть произведено n испытаний, при этом некоторое событие А наступило m раз. Число m называется абсолютной часто­той (или просто частотой) события А, а отношение называется относительной частотой события А.При транспортировке из 10 000 арбузов испор­тилось 26. Здесь m= 26 — абсолютная частота испорченных ар­бузов, а P*(A)=0,0026 относительная.Результаты многочисленных опытов и наблюдений помогают заключить: при проведении серий из n испытаний, когда число n сравнительно мало, относительная частота Р*(A) принимает зна­чения, которые могут довольно сильно отличаться друг от друга. Но с увеличением n — числа испытаний в сериях — относитель­ная частота Р*(А) приближается к некоторому числу Р(А), стабилизируясь возле него и принимая все более устойчивые значения.Было проведено 10 серий бросаний монеты, по 1000 бросаний в каждой. Относительные частоты выпадения герба оказались равными 0,501; 0,485; 0,509; 0,536; 0,485; 0,488; 0,500;0,497; 0,494; 0,484. Эти частоты группируются около числа 0,5Статистическое определение вероят­ностиВероятностью события А в данном испытании называется число Р (А), около которого группируются значения относительной частоты при больших n.По официальным данным шведской статистики, относительные частоты рождения девочек по месяцам 2007 г. харак­теризуются следующими числами (расположены в порядке сле­дования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,473. Эти частоты группируются около числа 0,482.Таким образом, относительная частота события приближенно совпадает с его вероятностью, если число испытаний достаточно велико. Геометрическая вероятностьДо этого мы рассматривали возможные эксперименты, в которых реализуется конечное множество событий. Однако существует большое количество задач, для которых такое предположение не является справедливым. При решении таких задач предполагается, что множество реализуемых событий может быть представлено в виде некоторой геометрической фигуры, а конкретное событие соответствует точке заданной части этой фигуры. В качестве события A можно рассмотреть любую подобласть области Ω. Например, фигуру внутри исходной фигуры на плоскости или отрезок, лежащий внутри исходного отрезка на прямой.Заметим, что элементарным событием на таком множестве может быть только точка. В самом деле, если множество содержит более одной точки, его можно разбить на два непустых подмножества. Следовательно, такое множество уже неэлементарно.Теперь определим вероятность. Тут тоже все легко: вероятность «попадания» в каждую конкретную точку равна нулю. Иначе получим бесконечную сумму одинаковых положительных слагаемых (ведь элементарные события равновероятны), которые в сумме больше P(Ω) = 1.Итак, элементарные события для бесконечных областей Ω — это отдельные точки, причем вероятность «попадания» в любую из них равна нулю. Но как искать вероятность неэлементарного события, которое, подобно Ω, содержит бесконечное множество точек? Вот мы и пришли к определению геометрической вероятности.Геометрическая вероятность события A, являющегося подмножеством множества Ω точек на прямой или плоскости — это отношение площади фигуры A к площади всего множества Ω.Мишень имеет форму окружности. Какова вероятность попадания в ее правую половину, если попадание в любую точку мишени равновероятно? При этом промахи мимо мишени исключены. Взглянем на картинку: нас устроит любая точка из правого полукруга. Очевидно, площадь S(A) этого полукруга составляет ровно половину площади всего круга, поэтому имеем P=0,5Студент и студентка договариваются о встрече на заданном промежутке времени Т. Тот, кто приходит первым ожидает другого в течение времени tВ качестве множества элементарных событий рассмотри квадрат, состоящий из точек (x,y), 0<=x<=T, 0<=y<=T, где x и у время прихода его и ее.Благоприятсвующие события образуют точки, для которых |x-y|<t, т.е. точки квадрата между прямыми y=x-t, y=x+t. Площадь получающейся фигуры равна T2-(T-t)2, а площадь всего квадрата – Т2. Отсуда искомая вероятность Свойства вероятностейСложение вероятностей несовместимых событийСуммой событий А и В называется собы­тие С = А + В, состоящее в наступлении по крайней мере одного из событий А или В.Стрельба двух стрелков (каждый де­лает по одному выстрелу). Событие А — попадание в мишень пер­вым стрелком, событие В — попадание в мишень вторым стрелком. Суммой событий А и В будет событие С = А + В, состоящее в попадании в мишень по крайней мере одним стрелком.Произведением событий А и В назы­вается событие С = АВ, состоящее в том, что в результате испыта­ния произошло и событие А, и событие В.Аналогично произведением конечного числа событий A1 А2, …, Ak называется событие А = А1 * A2 * ... * Ak, состоящее в том, что в результате испытания произошли все указанные события.В условиях предыдущего примера произведением событий А и В будет событие С = АВ, состоящее в попадании в мишень двух стрелков.Из определения непосредственно следует, что АВ = ВА.Вероятность суммы двух несовместимых событий А и В равна сумме вероятностей этих событий:Р (А + В) = Р (А) + Р (В). Следствие. Сумма вероятностей противоположных собы­тий А и А равна единице:Р(А) + Р(А

Коэффициент сопряженности Чупрова. Дальнейшим обоб-щением четырехпольных таблиц являются многопольные таблицы, для которых сопряженность наиболее часто оценивается по формуле, предложенной русским статистиком А. А. Чупровым. Прежде чем приводить ее рассмотрим несколько реальных ситуаций, когда такая оценка может потребоваться. Известно, например, что окраска тюльпанов связана с наличием определенных пигментов. Может представлять интерес вопрос о том, с какими именно пигментами преимущественно связана та или иная окраска цветка. Или другой пример. Окружающая гнездо полярной крачки обстановка может представлять собой зеленые растения, растения и гальку, пестрые камешки и т. д. При этом можно наблюдать самые разные по качеству гнезда: от его отсутствия до очень хорошо сделанного. В этом случае желательно знать, связано ли качество гнезда с какой-то одной или несколькими характеристиками окружающей среды. Общим для этих и других подобных задач является то, что в распоряжении экспериментатора оказываются данные о некотором множестве объектов, обладающих двумя признаками, причем каждый из признаков может иметь несколько градаций. В этом случае , где m - число разновидностей явления Х; k - число разновидностей явления Y, n – общее число объектов (m*k). Независимо то того, что каждый из описательных признаков, несмотря на разницу в численности его разновидностей, можно свести к альтернативному - только с двумя разновидностями, довольно часто в практике возникает необходимость работать с описательными признаками более двух разновидностей. В таких случаях необходимо при вычислении коэффициента корреляции составлять так называемую корреляционную таблицу (где X1,X2,...Xn - обозначают разновидность одного признака, а Y1, Y2... Yn - разновидности другого).При наличии такой схемы коэффициент корреляции находят по формуле: , где - коэффициент связи, m- число разновидностей явления Х; k - число разновидностей явления Y.Данный метод пригоден также и для экспрессной оценки связи между количественными (например возраст) и качествен-ными (например брак) параметрами.На практике (особенно в зоологии и ботанике) довольно часто встречаются другие меры измерения связи.

, как правило, отличаться по численным значениям некоторых характеристик. Если в распоряжении исследователя оказалась одна или несколько особей, для которых известно, что они взяты из одного какого-то местообитания, но неизвестно, из какого именно, то как решить вопрос об их принадлежности к той или иной экологической нише? (Впервые поставил и решил такую задачу немецкий ихтиолог Ф. Гейнике при изучении принадлежности отдельных особей к той или иной расе сельдей Северного моря. При этом было использовано приведенное выше свойство среднего.)

Как практически его использовать, покажем на следующем примере. Известен пример определения вида по 8 количественным характеристикам измерения черепа. Были найдены отклонения этих характеристик для черепа зайца неизвестного вида от соответствующих средних для зайца-беляка и зайца-русака. Ряды отклонений по абсолютной величине выглядят так: беляка— 1,7; 4,2; 0; 2; 1,8; 3,4; 0,6; 6,1, от русака—2,8; 2,5; 1; 0; 0,8; 2,1; 2,1; 2. Суммы квадратов этих отклонений равны соответственно 60,05 и 28,55, поэтому сделан вывод о том, что неизвестный череп принадлежал зайцу-русаку.

Средняя гармоническая. Эту характеристику в отличие от средней арифметической определяют как сумму обратных значений вариант, деленную на их число.

Средняя гармоническая применяется тогда, когда результаты наблюдений обнаруживают обратную зависимость заданных обратными значениями вариант.

5 студентов за 1 час набрали следующее количество жуков: 1 - 10, 2 - 20, 3 - 25, 4 - 30, 5 - 20. Всего 105 штук. Оценим итоги с помощью Х и Хh. X=21 жук.

Xh=5/(1/10+1/20+1/25+1/30+1/20)=18.31.

Разница весьма заметна. Какая же из средних верна. Попробуем с помощью Х вычислить время, затраченное на 1 жука - 60/21=2.86 мин. Верно ли это ? Проверим результат. первый студент затратил 6 мин, 2 - 3, 3 - 2.4, 4 - 2, 5 - 3. В среднем получится 3.38мин. Видно, что средняя арифметическая непригодна для определения среднего времени, затрачиваемого на поимку 1 жука.

Средняя квадратическая. Для более точной числовой характеристики мер площади применяется средняя квадратическая.

.

Имеются три участка земельной площади со сторонами квадрата x1=100м, x2=200м, x3=300м. Если использовать арифметическую среднюю величину, то общая площадь всех участков была бы 3*2002=120000м2. Правильный ответ дает средняя квадратическая величина – 3*216
2=140000м2.

Средняя кубическая. В качестве характеристики объемных признаков более точной является средняя кубическая.



Средняя геометрическая. Этот показатель представляет собой корень n-й степени из произведений членов ряда. Средняя геометрическая - более точная характеристика рядов динамики, чем средняя арифметическая. Однако, они, как правило, незначительно отличаются друг от друга. К тому же вычисление средней арифметической проще. Поэтому вместо средней геометрической в качестве приближенной характеристики темпов динамики нередко используют среднюю арифметическую. При этом приходится учитывать, что средняя геометрическая дает хорошие (не искаженные) результаты лишь при наличии геометрической прогрессии, заложенной в самой динамике явления. Это обстоятельство ограничивает область применения средней геометрической.

Количество волков в прошлом году увеличилось в два раза и в этом еще в три раза. Ясно, что за два года численность выросла в 6 раз. Каков средний рост за год? Арифметическая средняя здесь непригодна, ибо если за год численность возросла бы в (2+3)/2=2,5 раз, то за два года численность бы выросла в 2,5*2,5=6,25 раз, а не в шесть раз. Геометрическая средняя дает правильный ответ: 6 = 2,45 раз.


Медиана
Медиана (Md) определяется как срединное значение в ранжированном ряду данных. Это значит, что по обе стороны от нее расположено ровно по половине данных. Применительно к кривой распределения медиана представляет такую точку на оси абсцисс, что ордината, проходящая через нее, делит площадь под кривой на две равные части.

Для определения медианы рекомендуется сначала упорядочить данные. Например, для определения значения медианы в массиве {8, 11, 12, 20, 12, 13, 9, 15, 19, 17, 19} необходимо этот массив упорядочить (произвести сортировку по возрастанию): {8, 9, 11, 12, 12, 13, 15, 17, 19, 19, 20}. Медиана будет равна 13 (обозначатся след. образом: Ме = 13). Если количество данных в выборке четное, то медиана равна средней арифметической между двумя центральными значениями. Например, если добавить в последнюю выборку значение 20, и упорядоченный массив примет следующий вид: {8, 9, 11, 12, 12, 13, 15, 17, 19, 19, 20, 20}, то медиана будет равна 14. В подобном случае медиана не может соответствовать ни одному из значений выборки. Медиана может принимать и дробные значения. Например, если мы в последнем примере 15 (одно из двух центральных значений) заменим на 14, то выборка примет вид {8, 9, 11, 12, 12, 13, 14, 17, 19, 19, 20, 20} и медиана будет равна 13,5.

В тех случаях, когда в выборке относительно немного данных, медиана ищется по указанному правилу. Если же данных много и они представлены в виде таблицы распределения численностей, то медиана определяется приближенно в том класс-интервале, для которого накоплено более половины значений анализируемого ряда данных.

Медиана обладает свойством, на котором основывается теоретическое и практическое применение. Это свойство состоит в том, что сумма абсолютных значений отклонений всех значений ряда от его медианы есть величина наименьшая.

Персентили
Персентили - это показатели типа средних по расположению в ряду. Если данные не сгруппированы, они определяются по месту нахождения после того, как все данные будут расположены по восходящей градации по величине изучаемого признака (пятидесятый персентиль известен под именем медианы, в предыдущем примере было показано как он вычисляется). Если данные сгруппированы в равномерно отстоящие друг от друга интервалы, то для получения соответствующих персентилей используется формула:

Pi=LPi+(c/f)*e,

где Lpi - нижняя граница интервала, в котором находится соответствующий персентиль;

с - число случаев, которое требуется прибавить к
кумулятивному ряду случаев доперсентильных интервалов, чтобы получить порядковое число персентильного случая;

f - число случаев персентильного интервала;

е - величина персентильного интервала.

В практике обычно пользуются только некоторыми из персентилей: P3, P10, P25, P50, P75, P90, P97. Считается, что если индивидуально наблюдаемый признак находится в границах от Р25 до Р75, то величина его соответствует норме (следовательно, в норму входят 50% всех случаев), если он находится в границах от Р10 до Р25 и от Р75 до Р90, то оценка его соответственно выше или ниже средней (по 15%). Если величина рассматриваемого признака находится в границах от Р3 до Р10 и Р90 до Р97, оценка будет соответственно низкой или высокой (по 7%). В остальных случаях - очень низкая или очень высокая.

Если распределение изучаемого признака отличается от нормального, то при выработке нормативов следует предпочесть метод персентилей.

Имеются следующие данные о истолическом давлении крови у мужчин в возрасте 25-29лет. Необходимо найти персентили P3, P10, P25, P50, P75, P90, P97 и определить интервалы, в границах которых находятся отдельные нормативные группы .

Чтобы выполнить заданную задачу, первоначально находят так называемый начетный ряд (кумулятивные итоги - третий столбец таблицы). Он получается следующим образом, к числу случаев первого интервала прибавляют число случаев второго, к полученному итогу прибавляют число случаев третьего интервала и т.д.

RR в мм. рт. сб.

Число случаев

Куммулятивные суммы

70-90

10

10

90-110

100

110

110-130

400

510

130-150

200

710

150-170

100

810

170-190

70

880

190-210

60

940

210-230

30

970

230-250

20

990

250-270

10

1000


Затем находим номера соответствующих персентилей по формуле:

/100*Pi, где - сумма всех случаев (в нашем примере 1000), Pi - соответствующий персентиль. По этой формуле номер третьего персентиля будет равен 30=(1000/100)*3, десятого персентиля -100, остальных персентилей соответственно 250, 500, 750, 900, 970.

По куммулятивным суммам определяют, в каком интервале находится каждый из требующихся персентилей. Например, персентиль №30 находится во втором интервале 90-100, №100 - в том же интервале, №250 - в интервале 110-130 и т.д. Затем при помощи формулы 1 находят величины искомых персентилей. В нашем случае: Р3=90+(20/100)*20=94 мм;

Р10=90+(90/100)*20=108 мм; Р25=110+(140/400)*20=117 мм;

Р50=110+(390/400)*20=129.5 мм; Р75=150+(40/100)*20=158 мм;

Р90=190+(20/60)*20=186.67 мм;

Р97=210+(30/30)*20=230 мм;

Следовательно, интервалы нормативов будут следующие:

Персентиль

Р3

Р10

Р25

Р50

Р75

Р90

Р97

Давление

94

108

117

130

158

187

230




Очень низкое. Сильно выраженная гипотония

Низкое. Гипото-ния.

Ниже среднего. Слабо выраженная гипотония.

Средние. Нормальные случаи.

Выше среднего. Слабо выраженная гипертония.

Высокие. Гипертония.

Очень высокие. Сильно выраженная гипертония.

Следует учитывать, что вырабатывать нормативы следует на большом количестве случаев (100-200 и более). Только тогда имеет смысл вычислять персентили.
Мода
Мода (Mo) представляет собой наиболее часто встречающееся в распределении численностей значение. Если к данным таблицы распределения численностей подобрать теоретическую кривую распределения, то мода равна абсциссе точки, имеющей максимальную для этой кривой ординату.

Например, в следующей выборке: {2, 3, 5, 1, 4, 5, 6, 5, 2} модой будет являться значение 5 (обозначатся следующим образом: Мо = 5). Если массив содержит 2 моды, то распределение называется бимодальным. Таким примером может служить выборка {3, 3, 5, 1, 4, 5, 6, 5, 3}. Здесь Мо1 = 5, а Мо2 = 3.

Бимодальное или полимодальное распределение могут рассматриваться как признак неоднородности выборки. Например, школьный класс образован в результате механического слияния двух разных классов, и показатели мод интеллекта были изначально различны. После слияния в объединенной выборке профиль интеллекта будет иметь 2 моды.