Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 499
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
, которые равны друг другу по абсолютной величине. Следовательно, все значения меньше отрицательного и больше положительного значения для t-распределения при выбранном уровне значимости будут составлять критическую область. Попадание выборочного значения t в эту область приводит к принятию альтернативной гипотезы.
Итак, пусть в нашем примере известно, что диаметр раковины моллюска равен 18,2мм. В нашем распоряжении оказалась выборка из 50 вновь найденных раковин, для которых x=18,9мм, а Sx=2,18мм. Проверим 18,9=18,2, против 18,918,2.
Если уровень значимости выбрать 0,05, то критическое значение t=2,01. Отсюда следует, что нулевую гипотезу можно отклонить в пользу альтернативной на уровне значимости 0,05. Т.е. можно утверждать, что диаметр раковин зависит от места обитания.
Рассмотрим теперь случай, когда необходимо сравнить между собой средние двух генеральных совокупностей. Проверяемые гипотезы выглядят так: H0: X1- X2=0, H1: X1- X20. Предполагается, что дисперсии в обеих группах равны. Тогда:
, где .
Пусть при измерении листьев одной и той же популяции растений в течение двух сезонов получены следующие результаты: X1=53,5; ; n1=485; X2=50,2; ; n2=325. Оценим H0: X1- X2=0 на уровне значимости 0,01.
Табличное значение t=2,58. Поэтому нулевая гипотеза о равенстве средних значений должна быть отвергнута на выбранном уровне значимости.
Нужно сделать некоторые замечания, связанные с предположениями, используемыми при построении t-критерия. Прежде всего, показано, что нарушения допущения о нормальности для H0: X1- X2=0 имеют незначительное влияние на уровень значимости и мощность критерия для n30. Несущественно также и нарушение предположения об однородности дисперсий обеих генеральных совокупностей, из которых берутся выборки, но только в том случае
, когда объемы выборок равны.
Если же n1n2, а дисперсии обеих выборок отличаются друг от друга: .
Критерии согласия для дисперсий
против
Для проверки нулевой гипотезы используется критерий отношений дисперсий Фишера.
.
Так как суммы квадратов отклонений нормально распределенных случайных величин от их средних значений имеют распределение 2, то числитель и знаменатель представляют собой величины с распределением 2, поделенные соответственно на n1 и n2, и следовательно, их отношение имеет F-распределение с n1-1 и n2-1 степенями свободы.
Общепринято и так построены таблицы F-распределения что в качестве числителя берется большая из дисперсий, и поэтому определяется только одна критическая точка, соответствующая выбранному уровню значимости.
U критерий Маана-Уитни
Критерий Манна-Уитни представляет непараметрическую альтернативу t-критерия для независимых выборок.
Критерий Манна-Уитни предполагает, что рассматриваемые переменные измерены, по крайней мере, в порядковой шкале (ранжированы). Интерпретация теста по существу похожа на интерпретацию результатов t-критерия для независимых выборок, за исключением того, что U критерий вычисляется, как сумма индикаторов попарного сравнения элементов первой выборки с элементами второй выборки.
U критерий - наиболее мощная (чувствительная) непараметрическая альтернатива t-критерия для независимых выборок; фактически, в некоторых случаях он имеет даже большую мощность, чем t-критерий.
Если объем выборки больше 20, то распределение выборки для U статистики быстро сходится к нормальному распределению.
Поэтому вместе с U статистикой часто показываются z значения (для нормального распределения и соответствующее p-значение.
Проверим гипотезу о принадлежности сравниваемых независмых выборок к одной и той же генеральной совокупности с помощью непараметрического U-критерия Манна-Уитни. Сравним результаты, полученные в примере 1 для 2-го и 3-го столбцов таблицы по критерий Стьюдента, с результатами непараметрического сравнения. Для расчета U-критерия расположим варианты сравниваемых выборок в порядке возрастания в один обобщенный ряд и присвоим вариантам обобщенного ряда ранги от 1 до n1 + n2. Первая строка представляет собой варианты первой выборки, вторая - второй выборки, третья - соответствующие ранги в обобщенном ряду:
Надо обратить внимание, что если имеются одинаковые варианты, им присваивается средний ранг, однако значение последнего ранга должно быть равно n1 + n2 (в нашем случае 20). Это правило используют для проверки правильности ранжирования.
Отдельно для каждой выборки рассчитываем суммы рангов их вариант R1 и R2. В нашем случае:
R1 = 1 + 2,5 + 2,5 + 5 + 5 + 9 + 9 + 9 + 12 + 14 = 69
R2 = 5 + 9 + 9 + 14 + 14 + 17 + 17 +17 + 19,5 + 19,5 = 141
Для проверки правильности вычислений можно воспользоваться другим правилом: R1 + R2 = 0,5 * (n1 + n2) * (n1 + n2 + 1). В нашем случае R1 + R2 = 210.
Статистика U1 = 69 - 10*11/2 = 14; U2 = 141 - 10*11/2 = 86.
Для проверки одностороннего критерия выбираем минимальную статистику U1 = 14 и сравниваем ее с критическим значением для n1 = n2 = 10 и уровня значимости 1%, равным 19. Так как вычисленное значение критерия меньше табличного, нулевая гипотеза отвергается на выбранном уровне значимости, и различия между выборками признаются статистически значимыми.
Сравнение качественных признаков
Критерий χ2
Условия применения: объем выборки n 40, выборочные данные сгруппированы в интервальный вариационный ряд с числом интервалов не менее 7, ожидаемые (теоретические) частоты интервалов не должны быть меньше 5.
Проверяемая гипотеза H0 состоит в том, что плотность распределения генеральной совокупности, из которой была взята выборка соответствует теоретической модели.
Хи-квадрат = ∑(Э - Т)² / Т
df= (R - 1) * (C - 1), где R – количество строк в таблице, C – количество столбцов.
К примеру, психолог хочет узнать, действительно ли то, что учителя более предвзято относятся к мальчикам, чем к девочкам. Т.е. более склонны хвалить девочек. Для этого психологом были проанализированы характеристики учеников, написанные учителями. Данные о частоте встречаемости слов были занесены в таблицу:
Для этого построим таблицу распределения эмпирических частот, т.е. тех частот, которые мы наблюдаем:
Итак, пусть в нашем примере известно, что диаметр раковины моллюска равен 18,2мм. В нашем распоряжении оказалась выборка из 50 вновь найденных раковин, для которых x=18,9мм, а Sx=2,18мм. Проверим 18,9=18,2, против 18,918,2.
Если уровень значимости выбрать 0,05, то критическое значение t=2,01. Отсюда следует, что нулевую гипотезу можно отклонить в пользу альтернативной на уровне значимости 0,05. Т.е. можно утверждать, что диаметр раковин зависит от места обитания.
Рассмотрим теперь случай, когда необходимо сравнить между собой средние двух генеральных совокупностей. Проверяемые гипотезы выглядят так: H0: X1- X2=0, H1: X1- X20. Предполагается, что дисперсии в обеих группах равны. Тогда:
, где .
Пусть при измерении листьев одной и той же популяции растений в течение двух сезонов получены следующие результаты: X1=53,5; ; n1=485; X2=50,2; ; n2=325. Оценим H0: X1- X2=0 на уровне значимости 0,01.
Табличное значение t=2,58. Поэтому нулевая гипотеза о равенстве средних значений должна быть отвергнута на выбранном уровне значимости.
Нужно сделать некоторые замечания, связанные с предположениями, используемыми при построении t-критерия. Прежде всего, показано, что нарушения допущения о нормальности для H0: X1- X2=0 имеют незначительное влияние на уровень значимости и мощность критерия для n30. Несущественно также и нарушение предположения об однородности дисперсий обеих генеральных совокупностей, из которых берутся выборки, но только в том случае
, когда объемы выборок равны.
Если же n1n2, а дисперсии обеих выборок отличаются друг от друга: .
Критерии согласия для дисперсий
против
Для проверки нулевой гипотезы используется критерий отношений дисперсий Фишера.
.
Так как суммы квадратов отклонений нормально распределенных случайных величин от их средних значений имеют распределение 2, то числитель и знаменатель представляют собой величины с распределением 2, поделенные соответственно на n1 и n2, и следовательно, их отношение имеет F-распределение с n1-1 и n2-1 степенями свободы.
Общепринято и так построены таблицы F-распределения что в качестве числителя берется большая из дисперсий, и поэтому определяется только одна критическая точка, соответствующая выбранному уровню значимости.
U критерий Маана-Уитни
Критерий Манна-Уитни представляет непараметрическую альтернативу t-критерия для независимых выборок.
Критерий Манна-Уитни предполагает, что рассматриваемые переменные измерены, по крайней мере, в порядковой шкале (ранжированы). Интерпретация теста по существу похожа на интерпретацию результатов t-критерия для независимых выборок, за исключением того, что U критерий вычисляется, как сумма индикаторов попарного сравнения элементов первой выборки с элементами второй выборки.
U критерий - наиболее мощная (чувствительная) непараметрическая альтернатива t-критерия для независимых выборок; фактически, в некоторых случаях он имеет даже большую мощность, чем t-критерий.
Если объем выборки больше 20, то распределение выборки для U статистики быстро сходится к нормальному распределению.
Поэтому вместе с U статистикой часто показываются z значения (для нормального распределения и соответствующее p-значение.
Проверим гипотезу о принадлежности сравниваемых независмых выборок к одной и той же генеральной совокупности с помощью непараметрического U-критерия Манна-Уитни. Сравним результаты, полученные в примере 1 для 2-го и 3-го столбцов таблицы по критерий Стьюдента, с результатами непараметрического сравнения. Для расчета U-критерия расположим варианты сравниваемых выборок в порядке возрастания в один обобщенный ряд и присвоим вариантам обобщенного ряда ранги от 1 до n1 + n2. Первая строка представляет собой варианты первой выборки, вторая - второй выборки, третья - соответствующие ранги в обобщенном ряду:
6 | 7 | 7 | 8 | 8 | | 9 | 9 | 9 | | | 10 | 11 | | | | | | | |
| | | | | 8 | | | | 9 | 9 | | | 11 | 11 | 12 | 12 | 12 | 13 | 13 |
1 | 2,5 | 2,5 | 5 | 5 | 5 | 9 | 9 | 9 | 9 | 9 | 12 | 14 | 14 | 14 | 17 | 17 | 17 | 19,5 | 19,5 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Надо обратить внимание, что если имеются одинаковые варианты, им присваивается средний ранг, однако значение последнего ранга должно быть равно n1 + n2 (в нашем случае 20). Это правило используют для проверки правильности ранжирования.
Отдельно для каждой выборки рассчитываем суммы рангов их вариант R1 и R2. В нашем случае:
R1 = 1 + 2,5 + 2,5 + 5 + 5 + 9 + 9 + 9 + 12 + 14 = 69
R2 = 5 + 9 + 9 + 14 + 14 + 17 + 17 +17 + 19,5 + 19,5 = 141
Для проверки правильности вычислений можно воспользоваться другим правилом: R1 + R2 = 0,5 * (n1 + n2) * (n1 + n2 + 1). В нашем случае R1 + R2 = 210.
Статистика U1 = 69 - 10*11/2 = 14; U2 = 141 - 10*11/2 = 86.
Для проверки одностороннего критерия выбираем минимальную статистику U1 = 14 и сравниваем ее с критическим значением для n1 = n2 = 10 и уровня значимости 1%, равным 19. Так как вычисленное значение критерия меньше табличного, нулевая гипотеза отвергается на выбранном уровне значимости, и различия между выборками признаются статистически значимыми.
Сравнение качественных признаков
Критерий χ2
Условия применения: объем выборки n 40, выборочные данные сгруппированы в интервальный вариационный ряд с числом интервалов не менее 7, ожидаемые (теоретические) частоты интервалов не должны быть меньше 5.
Проверяемая гипотеза H0 состоит в том, что плотность распределения генеральной совокупности, из которой была взята выборка соответствует теоретической модели.
Хи-квадрат = ∑(Э - Т)² / Т
df= (R - 1) * (C - 1), где R – количество строк в таблице, C – количество столбцов.
К примеру, психолог хочет узнать, действительно ли то, что учителя более предвзято относятся к мальчикам, чем к девочкам. Т.е. более склонны хвалить девочек. Для этого психологом были проанализированы характеристики учеников, написанные учителями. Данные о частоте встречаемости слов были занесены в таблицу:
| «Активный» | «Старательный» | «Дисциплинированный» |
Мальчики | 10 | 5 | 6 |
Девочки | 6 | 12 | 9 |
Для этого построим таблицу распределения эмпирических частот, т.е. тех частот, которые мы наблюдаем:
| «Активный» | «Старательный» | «Дисциплинированный» | Итого: |
Мальчики | 10 | 5 | 6 | 21 |
Девочки | 6 | 12 | 9 | 27 |
Итого: | 16 | 17 | 15 | n = 48 |