Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 492
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Теоретически, мы ожидаем, что частоты распределятся равновероятно, т.е. частота распределится пропорционально между мальчиками и девочками. Построим таблицу теоретических частот. Для этого умножим сумму по строке на сумму по столбцу и разделим получившееся число на общую суму (n).
| «Активный» | «Старательный» | «Дисциплинированный» | Итого: |
Мальчики | (21 * 16)/48 = 7 | (21 * 17)/48 = 7.44 | (21 * 15)/48 = 6.56 | 21 |
Девочки | (27 * 16)/48 = 9 | (27 * 17)/48 = 9.56 | (27 * 15)/48 = 8.44 | 27 |
Итого: | 16 | 17 | 15 | n = 48 |
Итоговая таблица для вычислений будет выглядеть так:
Категория 1 | Категория 2 | Эмпирич. | Теоретич. | (Э-Т)2/Т |
Мальчики | «Активный» | 10 | 7 | 1,28 |
| «Старательный» | 5 | 7,44 | 0,8 |
| «Дисциплини-рованный» | 6 | 6,56 | 0,47 |
Девочки | «Активный» | 6 | 9 | 1 |
| «Старательный» | 12 | 9,56 | 0,62 |
| «Дисциплини-рованный» | 9 | 8,44 | 0,04 |
| | | | Сумма: 4,21 |
В нашем случае хи-квадрат = 4,21; df= 2.
По таблице критических значений критерия находим: при df= 2 и уровне ошибки 0,05 критическое значение χ2 = 5,99.
Полученное значение меньше критического, а значит принимается нулевая гипотеза. Вывод: учителя не придают значение полу ребенка при написании ему характеристики.
Сравнение долей
Для сравнения частот применяется Т-критерий Стьюдента для долей
Точный тест Фишера
Точный метод Фишера—Ирвина (критерий Фишера—Ирвина, точный метод Фишера) применяется для проверки нулевой гипотезы о том, отобраны ли две исследуемые бинарные (дихотомические) выборки из генеральных совокупностей с одинаковой частотой встречаемости изучаемого эффекта. Рассматриваемый метод предназначен для обработки так называемых четырехпольных (четырехклеточных) таблиц, или таблиц «2 х 2».
Таблицы 2х2 или четырехпольные таблицы имеют вид
| Есть эффект | Нет эффекта | |
1 группа | a | b | a+b |
2 группа | c | d | c+d |
| a+c | b+d | a+b+c+d |
где a,b,c,d - наблюдаемые частоты
a+b, c+d - суммы частот по строкам
a+c, b+d - суммы частот по колонкам
a+b+c+d - общее число наблюдений
В результате вычислений получается точное значение уровня значимости нулевой гипотезы. Вычисление производится по формуле:
Допустим имеется таблица "2х2" следующего вида:
2 | 3 |
6 | 4 |
Подсчитываем маргинальные частоты для данной таблицы:
2 | 3 | 5 |
6 | 4 | 10 |
8 | 7 | 15 |
p=(2+3)!*(6+4)!*(2+6)!*(3+4)!/((2+3+6+4)!*2!*3!*6!*4!)=0,326
Для вычисления одностороннего значения уровня значимости необходимо найти сумму всех вероятностей для комбинаций данной таблицы со значениями от 0 до вероятности данной таблицы (0,326).
Для вычисления двустороннего значения уровня значимости необходимо найти сумму всех вероятностей для комбинаций данной таблицы со значениями меньше или равными данной таблицы (0,326).
Минимальная маргинальная частота равна 5, поэтому для данной таблицы возможно (5+1) комбинаций с заданными маргинальными частотами.
0 | 5 | p=(0+5)!*(8+2)!*(0+8)!*(5+2)!/((0+8+5+2)!*0!*8!*5!*2!)=0,007 |
8 | 2 | |
| | |
1 | 4 | p=(1+4)!*(7+7)!*(1+7)!*(4+7)!/((1+4+7+7)!*1!*4!*7!*7!)=0,093 |
7 | 7 | |
| | |
2 | 3 | p=(2+3)!*(6+4)!*(2+6)!*(3+4)!/((2+3+6+4)!*2!*3!*6!*4!)=0,326 |
6 | 4 | |
| | |
3 | 2 | p=(3+2)!*(5+5)!*(3+5)!*(2+5)!/((3+2+5+5)!*3!*2!*5!*5!)=0,392 |
5 | 5 | |
| | |
4 | 1 | p=(4+1)!*(4+6)!*(4+4)!*(1+6)!/((4+1+4+6)!*4!*1!*4!*6!)=0,163 |
4 | 6 | |
| | |
5 | 0 | p=(5+0)!*(3+7)!*(5+3)!*(0+7)!/((5+0+3+7)!*5!*0!*3!*7!)=0,019 |
3 | 7 |
Таким образом уровень значимости для односторонней гипотезы составляет:
P=0,326 +0,093 + 0,007 = 0,426
а для двусторонней гипотезы:
P=0,326 + 0,093 + 0,007 + 0,163 + 0,019 = 0,608
Сравнение более двух независимых групп
Однофакторный дисперсионный анализ Фишера
Дисперсионный анализ — это статистический метод оценки связи между факторными и результативным признаками в различных группах, отобранный случайным образом, основанный на определении различий (разнообразия) значений признаков. В основе дисперсионного анализа лежит анализ отклонений всех единиц исследуемой совокупности от среднего арифметического. В качестве меры отклонений берется дисперсия (В)— средний квадрат отклонений. Отклонения, вызываемые воздействием факторного признака (фактора) сравниваются с величиной отклонений, вызываемых случайными обстоятельствами. Если отклонения, вызываемые факторным признаком, более существенны, чем случайные отклонения, то считается, что фактор оказывает существенное влияние на результативный признак.
Для того, чтобы вычислить дисперсию значения отклонений каждой варианты (каждого зарегистрированного числового значения признака) от среднего арифметического возводят в квадрат. Тем самым избавляются от отрицательных знаков. Затем эти отклонения (разности) суммируют и делят на число наблюдений, т.е. усредняют отклонения. Таким образом, получают значения дисперсий.
Важным методическим значением для применения дисперсионного анализа является правильное формирование выборки. В зависимости от поставленной цели и задач выборочные группы могут формироваться случайным образом независимо друг от друга (контрольная и экспериментальная группы для изучения некоторого показателя, например, влияние высокого артериального давления на развитие инсульта). Такие выборки называются независимыми.
Нередко результаты воздействия факторов исследуются у одной и той же выборочной группы (например, у одних и тех же пациентов) до и после воздействия (лечение, профилактика, реабилитационные мероприятия), такие выборки называются зависимыми.
Дисперсионный анализ, в котором проверяется влияние одного фактора, называется однофакторным (одномерный анализ). При изучении влияния более чем одного фактора используют многофакторный дисперсионный анализ (многомерный анализ).
Факторные признаки — это те признаки, которые влияют на изучаемое явление.
Результативные признаки — это те признаки, которые изменяются под влиянием факторных признаков.
Условия применения дисперсионного анализа:
Задачей исследования является определение силы влияния одного (до 3) факторов на результат или определение силы совместного влияния различных факторов (пол и возраст, физическая активность и питание и т.д.).
Изучаемые факторы должны быть независимые (несвязанные) между собой. Например, нельзя изучать совместное влияние стажа работы и возраста, роста и веса детей и т.д. на заболеваемость населения.
Подбор групп для исследования проводится рандомизированно (случайный отбор). Организация дисперсионного комплекса с выполнением принципа случайности отбора вариантов называется рандомизацией (перев. с англ. — random), т.е. выбранные наугад.
Можно применять как количественные, так и качественные (атрибутивные) признаки.
При проведении однофакторного дисперсионного анализа рекомендуется (необходимое условие применения):
-
Нормальность распределения анализируемых групп или соответствие выборочных групп генеральным совокупностям с нормальным распределением. -
Независимость (не связанность) распределения наблюдений в группах. -
Наличие частоты (повторность) наблюдений.
Сначала формулируется нулевая гипотеза, то есть предполагается, что исследуемые факторы не оказывают никакого влияния на значения результативного признака и полученные различия случайны.
Затем определяем, какова вероятность получить наблюдаемые (или более сильные) различия при условии справедливости нулевой гипотезы.
Если эта вероятность мала, то мы отвергаем нулевую гипотезу и заключаем, что результаты исследования статистически значимы. Это еще не означает, что доказано действие именно изучаемых факторов (это вопрос, прежде всего, планирования исследования), но все же маловероятно, что результат обусловлен случайностью.
При выполнении всех условий применения дисперсионного анализа, разложение общей дисперсии математически выглядит следующим образом:
Doбщ. = Dфакт + D ост.,
Doбщ. - общая дисперсия наблюдаемых значений (вариант), характеризуется разбросом вариант от общего среднего. Измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Общее разнообразие складывается из межгруппового и внутригруппового;