Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 500

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВЕДЕНИЕУчебно-методическое пособие знакомит студентов с основными понятиями о теории вероятностей, случайных процессах, статистическом оценивании и проверке гипотез, статистических методах обработки экспериментальных данных, математических методах, принятых в биологических исследованиях.Пособие состоит из четырех разделов: Введение в теорию вероятностей. Основные понятия и термины статистики. Статистические методы обработки экспериментальных данных. Компьютерная обработка данных анализа в специализированной программе EasyStatistics. Введение в теорию вероятностей дает представление о случайных событиях, вероятности и ее свойствах, случайных величинах и основных теоретических распределениях случайных величин.При изучении второго раздела разбираются понятия о совокупности и выборке, классификации признаков, дается представление о схемах научного эксперимента и научных гипотезах, достоверности и надежности результатов.Третий раздел знакомит со статистическими методами описания групп, способами их сравнения в зависимости от характера распределения исходных данных. Большое внимание уделено корреляционно-регрессионному анализу, лежащему в основе многомерных методов анализа. Разбираются широко распространенные в биологических исследованиях методы оценки динамики, цикличности и классификации. При описании каждого метода описываются условия, необходимые для проведения статистической обработки, и возможные трудности в интерпретации полученных показателей. Четвертый раздел посвящен практическому применению методов статистической обработки данных с помощью специализированной программы «Статистическая обработка медико-биологических данных» (EasyStatistics). Данная программа разработана автором пособия (Роспатент №2003612171) и предназначена для статистической обработки данных биологических и медицинских исследований и, в первую очередь, нацелена на выполнение курсовых и дипломных работ студентами. В то же время это не замена уже существующим мощным статистическим пакетам, таким как Statistica, а скорее дополнение, помогающее оценить возможности манипулирования данными и принципы работы с основными статистическими методами. Каждый раздел содержит список вопросов и заданий для самопроверки.Пособие также содержит список учебно-методических материалов, рекомендуемых для самостоятельной работы студентов.РАЗДЕЛ I. ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙЗакономерности, которым подчиняются случайные события, изучаются в разделах математики, которые называются теорией вероятностей и математической статистикой.Понятие о случайном событииОпыт, эксперимент, на­блюдение явления называются испытанием. Испытаниями, напри­мер, являются: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесенными на каждую грань числом очков — от одного до шести).Результат, исход испытания называется событием. Для обозначения событий используются большие буквы ла­тинского алфавита: А, В, С и т. д.Два события называются совместимыми, если появление одного из них не исключает появление другого в одном и том же испытании.Испытание: однократное бросание игральной кости. Событие А — появление четырех очков. Событие В— появле­ние четного числа очков. События Аи В совместимые.Два события называются несовместимы­ми, если появление одного из них исключает появление другого в одном и том же испытании.Испытание: однократное бросание монеты. Собы­тие А — выпадение герба, событие В — выпадение цифры. Эти события несовместимы, так как появление одного из них исключает появление другого.Несовместимость более чем двух событий означает их попарную несовместимостьИспытание: однократное бросание игральной кости. Пусть события А1, А2, А3, А4, А5, А6 соответственно выпа­дение одного очка, двух, трех и т. д. Эти события являются несов­местимыми..Два события А и В называются проти­воположными, если в данном испытании они несовместимы и одно из них обязательно происходит.Событие, противоположное событию А, обозначают через А.Испытание: бросание монеты. Событие А — выпадение герба, событие В — выпадение цифры. Эти события противоположны, так как исходами бросания могут быть лишь они, и появление одного из них исключает появление другого, т. е. А = В или А = В.Событие называется достоверным, если в данном испытании оно является единственно возможным его ис­ходом, и невозможным, если в данном испытании оно заведомо не может произойти.Испытание: извлечение шара из урны, в которой все шары белые. Событие А — вынут белый шар — достоверное событие; событие В — вынут черный шар — невозможное событие.Достоверное и невозможное события в данном испытании являются противоположными.Событие А называется случайным, если оно объективно может наступить или не наступить в данном испы­тании.Выпадение шести очков при броса­нии игральной кости — случайное событие. Оно может наступить, но может и не наступить в данном испытании.Прорастание девяноста восьми зерен пшеницы из ста — случайное событие. Это событие может наступить, но, может быть, прорастет зерен больше или меньше.Классическое определение вероятностиВсякое испыта­ние влечет за собой некоторую совокупность исходов — резуль­татов испытания, т. е. событий. Во многих случаях возможно пере­числить все события, которые могут быть исходами данного испы­тания.Говорят, что совокупность событий обра­зует полную группу событий для данного испытания, если его ре­зультатом обязательно становится хотя бы одно из них.События Ul, U2, ..., Un , образующие полную группу попарно несовместимых и равновозможных собы­тий, будем называть элементарными событиями.Вернемся к опыту с подбрасыванием игральной кости. Пусть Ui — событие, состоящее в том, что кость выпала гранью с цифрой i. Как уже отмечалось, события U1, U2, …, U6 образуют полную группу попарно несовместимых событий. Так как кость предполагается однородной и симметрич­ной, то события U1, U2, …, U6 являются и равновозможными, т. е. элементарными.Событие А называется благоприят­ствующим событию В, если наступление события А влечет за собой наступление события В.Пусть при бросании игральной кости события U2, U4 и U6 — появление соответственно двух, четырех и шести очков и А — событие, состоящее в появлении четного очка; собы­тия U2, U4 и U6 благоприятствуют событию А.Классическое определение вероятностиВероятностью Р (А) события А называется отношение m/n числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т. е. Вычислим вероятность выпадения герба при одном бросании монеты. Очевидно, событие А — выпадение герба и событие В — выпадение цифры — образуют полную группу несовместимых и равновозможных событий для данного испытания. Значит, здесь n = 2. Событию А благоприятствует лишь одно со­бытие — само А, т. е. здесь m = 1. Поэтому Р(А) = 0,5.Найти вероятность того, что при бросании иг­ральной кости выпадет число очков, делящееся на 2 (событие А). Число элементарных событий здесь 6. Число благоприятст­вующих элементарных событий 3 (выпадение 2, 4 и 6). Поэтому .Из приведенного классического определения вероятности вы­текают следующие ее свойства.1. Вероятность достоверного события равна единице.Действительно, достоверному событию должны благоприят­ствовать все n элементарных событий, т. е. m = n и, следовательно, P(A)=1.2. Вероятность невозможного события равна нулю. В самом деле, невозможному событию не может благоприят­ствовать ни одно из элементарных событий, т. е. m = 0, откуда P(A)=0.3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных событий. Поэтому в этом случае 0 < m < n , значит, 0 <= Р (А)<= 1.Относительная частота.Статистическое определение ве­роятности.Классическое определение вероятности не являет­ся пригодным для изучения произвольных случайных событий. Так, оно неприемлемо, если результаты испытания не равновозможны. Например, при бросании неправильной игральной кости выпадение ее различных граней не равновозможно.В таких случаях используется так называемое статистическое определение вероятности.Пусть произведено n испытаний, при этом некоторое событие А наступило m раз. Число m называется абсолютной часто­той (или просто частотой) события А, а отношение называется относительной частотой события А.При транспортировке из 10 000 арбузов испор­тилось 26. Здесь m= 26 — абсолютная частота испорченных ар­бузов, а P*(A)=0,0026 относительная.Результаты многочисленных опытов и наблюдений помогают заключить: при проведении серий из n испытаний, когда число n сравнительно мало, относительная частота Р*(A) принимает зна­чения, которые могут довольно сильно отличаться друг от друга. Но с увеличением n — числа испытаний в сериях — относитель­ная частота Р*(А) приближается к некоторому числу Р(А), стабилизируясь возле него и принимая все более устойчивые значения.Было проведено 10 серий бросаний монеты, по 1000 бросаний в каждой. Относительные частоты выпадения герба оказались равными 0,501; 0,485; 0,509; 0,536; 0,485; 0,488; 0,500;0,497; 0,494; 0,484. Эти частоты группируются около числа 0,5Статистическое определение вероят­ностиВероятностью события А в данном испытании называется число Р (А), около которого группируются значения относительной частоты при больших n.По официальным данным шведской статистики, относительные частоты рождения девочек по месяцам 2007 г. харак­теризуются следующими числами (расположены в порядке сле­дования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,473. Эти частоты группируются около числа 0,482.Таким образом, относительная частота события приближенно совпадает с его вероятностью, если число испытаний достаточно велико. Геометрическая вероятностьДо этого мы рассматривали возможные эксперименты, в которых реализуется конечное множество событий. Однако существует большое количество задач, для которых такое предположение не является справедливым. При решении таких задач предполагается, что множество реализуемых событий может быть представлено в виде некоторой геометрической фигуры, а конкретное событие соответствует точке заданной части этой фигуры. В качестве события A можно рассмотреть любую подобласть области Ω. Например, фигуру внутри исходной фигуры на плоскости или отрезок, лежащий внутри исходного отрезка на прямой.Заметим, что элементарным событием на таком множестве может быть только точка. В самом деле, если множество содержит более одной точки, его можно разбить на два непустых подмножества. Следовательно, такое множество уже неэлементарно.Теперь определим вероятность. Тут тоже все легко: вероятность «попадания» в каждую конкретную точку равна нулю. Иначе получим бесконечную сумму одинаковых положительных слагаемых (ведь элементарные события равновероятны), которые в сумме больше P(Ω) = 1.Итак, элементарные события для бесконечных областей Ω — это отдельные точки, причем вероятность «попадания» в любую из них равна нулю. Но как искать вероятность неэлементарного события, которое, подобно Ω, содержит бесконечное множество точек? Вот мы и пришли к определению геометрической вероятности.Геометрическая вероятность события A, являющегося подмножеством множества Ω точек на прямой или плоскости — это отношение площади фигуры A к площади всего множества Ω.Мишень имеет форму окружности. Какова вероятность попадания в ее правую половину, если попадание в любую точку мишени равновероятно? При этом промахи мимо мишени исключены. Взглянем на картинку: нас устроит любая точка из правого полукруга. Очевидно, площадь S(A) этого полукруга составляет ровно половину площади всего круга, поэтому имеем P=0,5Студент и студентка договариваются о встрече на заданном промежутке времени Т. Тот, кто приходит первым ожидает другого в течение времени tВ качестве множества элементарных событий рассмотри квадрат, состоящий из точек (x,y), 0<=x<=T, 0<=y<=T, где x и у время прихода его и ее.Благоприятсвующие события образуют точки, для которых |x-y|<t, т.е. точки квадрата между прямыми y=x-t, y=x+t. Площадь получающейся фигуры равна T2-(T-t)2, а площадь всего квадрата – Т2. Отсуда искомая вероятность Свойства вероятностейСложение вероятностей несовместимых событийСуммой событий А и В называется собы­тие С = А + В, состоящее в наступлении по крайней мере одного из событий А или В.Стрельба двух стрелков (каждый де­лает по одному выстрелу). Событие А — попадание в мишень пер­вым стрелком, событие В — попадание в мишень вторым стрелком. Суммой событий А и В будет событие С = А + В, состоящее в попадании в мишень по крайней мере одним стрелком.Произведением событий А и В назы­вается событие С = АВ, состоящее в том, что в результате испыта­ния произошло и событие А, и событие В.Аналогично произведением конечного числа событий A1 А2, …, Ak называется событие А = А1 * A2 * ... * Ak, состоящее в том, что в результате испытания произошли все указанные события.В условиях предыдущего примера произведением событий А и В будет событие С = АВ, состоящее в попадании в мишень двух стрелков.Из определения непосредственно следует, что АВ = ВА.Вероятность суммы двух несовместимых событий А и В равна сумме вероятностей этих событий:Р (А + В) = Р (А) + Р (В). Следствие. Сумма вероятностей противоположных собы­тий А и А равна единице:Р(А) + Р(А

Коэффициент сопряженности Чупрова. Дальнейшим обоб-щением четырехпольных таблиц являются многопольные таблицы, для которых сопряженность наиболее часто оценивается по формуле, предложенной русским статистиком А. А. Чупровым. Прежде чем приводить ее рассмотрим несколько реальных ситуаций, когда такая оценка может потребоваться. Известно, например, что окраска тюльпанов связана с наличием определенных пигментов. Может представлять интерес вопрос о том, с какими именно пигментами преимущественно связана та или иная окраска цветка. Или другой пример. Окружающая гнездо полярной крачки обстановка может представлять собой зеленые растения, растения и гальку, пестрые камешки и т. д. При этом можно наблюдать самые разные по качеству гнезда: от его отсутствия до очень хорошо сделанного. В этом случае желательно знать, связано ли качество гнезда с какой-то одной или несколькими характеристиками окружающей среды. Общим для этих и других подобных задач является то, что в распоряжении экспериментатора оказываются данные о некотором множестве объектов, обладающих двумя признаками, причем каждый из признаков может иметь несколько градаций. В этом случае , где m - число разновидностей явления Х; k - число разновидностей явления Y, n – общее число объектов (m*k). Независимо то того, что каждый из описательных признаков, несмотря на разницу в численности его разновидностей, можно свести к альтернативному - только с двумя разновидностями, довольно часто в практике возникает необходимость работать с описательными признаками более двух разновидностей. В таких случаях необходимо при вычислении коэффициента корреляции составлять так называемую корреляционную таблицу (где X1,X2,...Xn - обозначают разновидность одного признака, а Y1, Y2... Yn - разновидности другого).При наличии такой схемы коэффициент корреляции находят по формуле: , где - коэффициент связи, m- число разновидностей явления Х; k - число разновидностей явления Y.Данный метод пригоден также и для экспрессной оценки связи между количественными (например возраст) и качествен-ными (например брак) параметрами.На практике (особенно в зоологии и ботанике) довольно часто встречаются другие меры измерения связи.



Существует несколько приближенных способов оценки моды. Один из них состоит в том, что гистограмма тем или иным способом аппроксимируется непрерывной кривой, и затем находится абсцисса, соответствующая максимальной ординате. Она и будет приближенно равна моде.

В симметричных распределениях х, Mo, Md совпадают, в умеренно асимметричных распределениях Md находится между х и Мо на расстоянии от х, равном примерно одной третьей расстояния от х до Мо. На этом и построено приведенное ниже эмпирическое соотношение:

Mo = x-3*(x-Md).
Показатели изменчивости
Изучение и количественное описание изменчивости (вариации) осуществляется различными методами, и можно сказать, что разработанные в математической статистике методы анализа экспериментальных данных в значительной своей части предназначены именно для оценки вариации.

Размах вариации. Это показатель, представляющий собой разность максимальной и минимальной вариант совокупности. Чем сильнее варьирует признак, тем больше размах вариации и наоборот.

Р = Хmax – Xmin
Лимиты и размах вариации - простые и наглядные характеристики варьирования, однако им присущи существенные недостатки: при повторных измерениях одного и того же группового объекта они могут существенно изменяться; кроме того, они не отображают существенные черты варьирования.

Более удобной характеристикой вариации мог бы служить показатель, который строится на основании отклонений вариант от их средней. Сумма таких отклонений, взятая без учета знаков и отнесенная к числу наблюдений, называется средним линейным отклонением.

Дисперсия и ее свойства. Несмотря на явное преимущество среднего линейного отклонения перед лимитами и размахом вариации, этот показатель не получил широкого распространения на практике. Наиболее подходящим оказался показатель, построенный не на отклонениях вариант от их средних, а на квадратах этих отклонений, его называют дисперсией (рассеяние) и выражают формулой .

Ценность дисперсии заключается в том
, что, являясь мерой варьирования числовых значений признака вокруг их средней арифметической, она измеряет и внутреннюю изменчивость значений признака, зависящую от разностей между наблюдениями. Преимущество дисперсии перед другими показателями вариации состоит также в том, что она разлагается на составные компоненты, позволяя тем самым оценивать влияние различных факторов на величину учитываемого признака.

Вместе с тем установлено, что рассчитываемая по формуле дисперсия оказывается смещенной по отношению к своему генеральному параметру на величину, равную n/n-1. Чтобы получить несмещенную дисперсию, нужно в формулу ввести в качестве множителя поправку на смещенность, называемую поправкой Бесселя. В результате Разность n-1 называют числом степеней свободы, под которым понимают число свободно варьирующих единиц в составе численно ограниченной статистической совокупности.

Дисперсия обладает рядом важных свойств, из которых необходимо выделить следующие.

1. Если каждую варианту совокупности уменьшить или увеличить на одно и то же постоянное число, то дисперсия не изменится.

2. Если каждую варианту совокупности умножить или разделить на одно и то же постоянное число А, то дисперсия уменьшится или увеличится в А2 раз.

Среднее квадратичное отклонение (S) Наряду с дисперсией важнейшей характеристикой варьирования является среднее квадратичное отклонение - показатель, представляющий корень квадратный из дисперсии.

Эта величина в ряде случаев оказывается более удобной характеристикой варьирования чем дисперсия, так как выражается в тех же единицах, что и средняя арифметическая.

Коэффициент вариации. Рассмотренные до сих пор показатели изменчивости: размах, дисперсия, стандартное отклонение определяют вариацию в абсолютных единицах, имеют размерность такую же или в квадрате (для дисперсии), как и сама измеряемая величина. При описании распределений численности это удобно, но если есть необходимость сравнить показатели рассеяния двух распределений, данные которых имеют разные размерности, то естественно возникают затруднения. Такие же затруднения возникают иногда даже в тех случаях, когда измеряемые величины имеют одну и ту же размерность. Например, показатели рассеяния в распределениях количества выпавших осадков и роста людей вычислены в сантиметрах. Однако из того, что стандартное отклонение роста людей больше, чем стандартное отклонение выпавших осадков, не следует, что изменчивость в первом случае больше. Меры изменчивости при сравнении показательны лишь в соотношении со средними, от которых измеряют отклонения. Поэтому возникает необходимость в таком показателе рассеяния, который был бы безразмерным и указывал на изменчивость по отношению к среднему, относительно которого вычисляются отклонения. Наиболее часто используемым показателем, удовлетворяющим этим требованиям, является коэффициент вариации

.

Из формулы видно, что на величину коэффициента вариации влияет как стандартное отклонение, так и среднее. Причем так как среднее стоит в знаменателе, при стремлении его к нулю коэффициент вариации становится неопределенным. Поэтому для распределений численностей со средними, близкими к нулю, использование коэффициента вариации в качестве показателя изменчивости нежелательно.
Стандартизованные данные
Из информации о конкретном значении признака и знания средней всей совокупности не очевидно относительное положение интересующего нас значения. Тем не менее достаточно часто желательно иметь возможность описать место некоторого значения в совокупности данных. Это можно сделать, измеряя его отклонение от среднего в единицах стандартного отклонения, т. е. .

Величины zi носят название стандартизованных (стандартизированных) величин.

Ясно, что при переходе к стандартизированным данным любое распределение численностей преобразуется в распределение со средним, равным нулю, и единичной дисперсией.

Стандартизованные данные, как и коэффициент вариации, являются безразмерными величинами, поэтому с их помощью можно сравнивать между собой распределения численностей, имеющие разную размерность.
Показатели асимметрии и эксцесса
При анализе распределения численностей значительный интерес представляет оценка отклонения данного распределения от симметричного, или, иначе говоря, его скошенность. Степень скошенности (асимметрия) является одним из наиболее важных свойств распределения численностей. Существует целый ряд статистических показателей, предназначенных для вычисления асимметрии. Все они отвечают, как минимум, двум требованиям, предъявляемым к любому показателю скошенности: он должен быть безразмерным и равным нулю, если распределение симметрично.



Из этой формулы следует, что распределения, скошенные влево, имеют положительную асимметрию, а скошенные вправо — отрицательную. Естественно, что для симметричных распределений, для которых среднее и медиана совпадают
, асимметрия равна нулю.

Известно, что величина As, определяемая по формуле, находится в интервале [-3,3]. Но практически эта величина очень редко достигает своих крайних значений, и для умеренно асимметричных одновершинных распределений она по модулю обычно меньше единицы.

Показатель асимметрии может быть использован не только для формального описания распределения численностей, но и для содержательной интерпретации полученных данных.

В самом деле, если наблюдаемый нами признак формируется под воздействием большого числа независимых друг от друга причин, каждая из которых вносит относительно небольшой вклад в величину этого признака, то в соответствии с некоторыми теоретическими предпосылками, обсуждавшимися в разделе по теории вероятностей, вправе ожидать, что получаемое в результате эксперимента распределение численностей будет симметричным. Однако если для экспериментальных данных получена значительная величина асимметрии (большая по абсолютной величине, чем 0,5), то можно предположить, что условия, указанные выше, не соблюдаются.

В этом случае имеет смысл предположить либо существование какого-то одного или двух факторов, вклад которых в формирование наблюдаемой в эксперименте величины существенно больше, чем остальных, либо постулировать наличие специального механизма, отличного от механизма независимого влияния множества причин на величину наблюдаемого признака.

Так, например, если изменения интересующей нас величины, соответствующие действию некоторого фактора, пропорциональны самой этой величине и интенсивности действия причины, то получаемое при этом распределение будет всегда скошено влево, иметь положительную асимметрию. С таким механизмом сталкиваются, например, биологи, оценивая величины, связанные с ростом растений и животных.



Другой способ оценки асимметрии основан на методе моментов.

.

Таким образом, мера скошенности представляет собой среднее значение стандартизованных данных, возведенных в куб.

Показатели асимметрии, вычисленные по разным формулам, отличаются друг от друга по величине, но одинаково указывают на характер скошенности. В пакетах прикладных программ для статистического анализа при расчете асимметрии используют последнюю формулу.

Эксцесс
Итак, мы рассмотрели три из четырех групп показателей, с помощью которых описываются распределения численностей. Последней из них является группа показателей островершинности, или эксцесса. Для вычисления одного из возможных показателей эксцесса используется следующая формула:

.

Величина эксцесса для нормальной (гауссовой) кривой распределения, играющей в статистике, так же как и в теории вероятностей большую роль, равна 3. Исходя из целого ряда соображений заостренность этой кривой принимают за стандарт, и поэтому в качестве показателя эксцесса используют величину γ=Ех - 3.



Эксцесс может принимать очень большие значения, , но он не может быть меньше единицы. Оказывается, что если распределение двувершинно (бимодально), то значение эксцесса близко к единице, так что γ близко к -2. Экспериментально установлено, что если значение γ меньше -1,4 , то можно быть уверенным, что имеющееся в нашем распоряжении распределение по крайней мере бимодально. Это особенно важно учитывать, когда эспериментальные данные, минуя стадию предварительной обработки, анализируются с помощью ЭВМ и перед глазами исследователя нет графического изображения распределения численностей.

Работа с качественными переменными

Количественная оценка результатов эксперимента.
Явления, интересующие исследователя, должны изучаться в их взаимосвязи, в зависимости от их структуры, соотношений, в которых они находятся между собой и пр. Для целостного изучения явлений, статистика выработала показатели, известные под названием показателей относительной доли или показателей структуры и показателей соотношения. Эти показатели даются в процентах, промилле, продецимилле и т. д.

Так как наблюдаемый признак в каждом отдельном случае может быть, а может не быть, то такие признаки называются альтернативными, а их обозначение при помощи статистических показателей и анализ этих показателей называется альтернативным анализом.