Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 500
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Существует несколько приближенных способов оценки моды. Один из них состоит в том, что гистограмма тем или иным способом аппроксимируется непрерывной кривой, и затем находится абсцисса, соответствующая максимальной ординате. Она и будет приближенно равна моде.
В симметричных распределениях х, Mo, Md совпадают, в умеренно асимметричных распределениях Md находится между х и Мо на расстоянии от х, равном примерно одной третьей расстояния от х до Мо. На этом и построено приведенное ниже эмпирическое соотношение:
Mo = x-3*(x-Md).
Показатели изменчивости
Изучение и количественное описание изменчивости (вариации) осуществляется различными методами, и можно сказать, что разработанные в математической статистике методы анализа экспериментальных данных в значительной своей части предназначены именно для оценки вариации.
Размах вариации. Это показатель, представляющий собой разность максимальной и минимальной вариант совокупности. Чем сильнее варьирует признак, тем больше размах вариации и наоборот.
Р = Хmax – Xmin
Лимиты и размах вариации - простые и наглядные характеристики варьирования, однако им присущи существенные недостатки: при повторных измерениях одного и того же группового объекта они могут существенно изменяться; кроме того, они не отображают существенные черты варьирования.
Более удобной характеристикой вариации мог бы служить показатель, который строится на основании отклонений вариант от их средней. Сумма таких отклонений, взятая без учета знаков и отнесенная к числу наблюдений, называется средним линейным отклонением.
Дисперсия и ее свойства. Несмотря на явное преимущество среднего линейного отклонения перед лимитами и размахом вариации, этот показатель не получил широкого распространения на практике. Наиболее подходящим оказался показатель, построенный не на отклонениях вариант от их средних, а на квадратах этих отклонений, его называют дисперсией (рассеяние) и выражают формулой .
Ценность дисперсии заключается в том
, что, являясь мерой варьирования числовых значений признака вокруг их средней арифметической, она измеряет и внутреннюю изменчивость значений признака, зависящую от разностей между наблюдениями. Преимущество дисперсии перед другими показателями вариации состоит также в том, что она разлагается на составные компоненты, позволяя тем самым оценивать влияние различных факторов на величину учитываемого признака.
Вместе с тем установлено, что рассчитываемая по формуле дисперсия оказывается смещенной по отношению к своему генеральному параметру на величину, равную n/n-1. Чтобы получить несмещенную дисперсию, нужно в формулу ввести в качестве множителя поправку на смещенность, называемую поправкой Бесселя. В результате Разность n-1 называют числом степеней свободы, под которым понимают число свободно варьирующих единиц в составе численно ограниченной статистической совокупности.
Дисперсия обладает рядом важных свойств, из которых необходимо выделить следующие.
1. Если каждую варианту совокупности уменьшить или увеличить на одно и то же постоянное число, то дисперсия не изменится.
2. Если каждую варианту совокупности умножить или разделить на одно и то же постоянное число А, то дисперсия уменьшится или увеличится в А2 раз.
Среднее квадратичное отклонение (S) Наряду с дисперсией важнейшей характеристикой варьирования является среднее квадратичное отклонение - показатель, представляющий корень квадратный из дисперсии.
Эта величина в ряде случаев оказывается более удобной характеристикой варьирования чем дисперсия, так как выражается в тех же единицах, что и средняя арифметическая.
Коэффициент вариации. Рассмотренные до сих пор показатели изменчивости: размах, дисперсия, стандартное отклонение определяют вариацию в абсолютных единицах, имеют размерность такую же или в квадрате (для дисперсии), как и сама измеряемая величина. При описании распределений численности это удобно, но если есть необходимость сравнить показатели рассеяния двух распределений, данные которых имеют разные размерности, то естественно возникают затруднения. Такие же затруднения возникают иногда даже в тех случаях, когда измеряемые величины имеют одну и ту же размерность. Например, показатели рассеяния в распределениях количества выпавших осадков и роста людей вычислены в сантиметрах. Однако из того, что стандартное отклонение роста людей больше, чем стандартное отклонение выпавших осадков, не следует, что изменчивость в первом случае больше. Меры изменчивости при сравнении показательны лишь в соотношении со средними, от которых измеряют отклонения. Поэтому возникает необходимость в таком показателе рассеяния, который был бы безразмерным и указывал на изменчивость по отношению к среднему, относительно которого вычисляются отклонения. Наиболее часто используемым показателем, удовлетворяющим этим требованиям, является коэффициент вариации
.
Из формулы видно, что на величину коэффициента вариации влияет как стандартное отклонение, так и среднее. Причем так как среднее стоит в знаменателе, при стремлении его к нулю коэффициент вариации становится неопределенным. Поэтому для распределений численностей со средними, близкими к нулю, использование коэффициента вариации в качестве показателя изменчивости нежелательно.
Стандартизованные данные
Из информации о конкретном значении признака и знания средней всей совокупности не очевидно относительное положение интересующего нас значения. Тем не менее достаточно часто желательно иметь возможность описать место некоторого значения в совокупности данных. Это можно сделать, измеряя его отклонение от среднего в единицах стандартного отклонения, т. е. .
Величины zi носят название стандартизованных (стандартизированных) величин.
Ясно, что при переходе к стандартизированным данным любое распределение численностей преобразуется в распределение со средним, равным нулю, и единичной дисперсией.
Стандартизованные данные, как и коэффициент вариации, являются безразмерными величинами, поэтому с их помощью можно сравнивать между собой распределения численностей, имеющие разную размерность.
Показатели асимметрии и эксцесса
При анализе распределения численностей значительный интерес представляет оценка отклонения данного распределения от симметричного, или, иначе говоря, его скошенность. Степень скошенности (асимметрия) является одним из наиболее важных свойств распределения численностей. Существует целый ряд статистических показателей, предназначенных для вычисления асимметрии. Все они отвечают, как минимум, двум требованиям, предъявляемым к любому показателю скошенности: он должен быть безразмерным и равным нулю, если распределение симметрично.
Из этой формулы следует, что распределения, скошенные влево, имеют положительную асимметрию, а скошенные вправо — отрицательную. Естественно, что для симметричных распределений, для которых среднее и медиана совпадают
, асимметрия равна нулю.
Известно, что величина As, определяемая по формуле, находится в интервале [-3,3]. Но практически эта величина очень редко достигает своих крайних значений, и для умеренно асимметричных одновершинных распределений она по модулю обычно меньше единицы.
Показатель асимметрии может быть использован не только для формального описания распределения численностей, но и для содержательной интерпретации полученных данных.
В самом деле, если наблюдаемый нами признак формируется под воздействием большого числа независимых друг от друга причин, каждая из которых вносит относительно небольшой вклад в величину этого признака, то в соответствии с некоторыми теоретическими предпосылками, обсуждавшимися в разделе по теории вероятностей, вправе ожидать, что получаемое в результате эксперимента распределение численностей будет симметричным. Однако если для экспериментальных данных получена значительная величина асимметрии (большая по абсолютной величине, чем 0,5), то можно предположить, что условия, указанные выше, не соблюдаются.
В этом случае имеет смысл предположить либо существование какого-то одного или двух факторов, вклад которых в формирование наблюдаемой в эксперименте величины существенно больше, чем остальных, либо постулировать наличие специального механизма, отличного от механизма независимого влияния множества причин на величину наблюдаемого признака.
Так, например, если изменения интересующей нас величины, соответствующие действию некоторого фактора, пропорциональны самой этой величине и интенсивности действия причины, то получаемое при этом распределение будет всегда скошено влево, иметь положительную асимметрию. С таким механизмом сталкиваются, например, биологи, оценивая величины, связанные с ростом растений и животных.
Другой способ оценки асимметрии основан на методе моментов.
.
Таким образом, мера скошенности представляет собой среднее значение стандартизованных данных, возведенных в куб.
Показатели асимметрии, вычисленные по разным формулам, отличаются друг от друга по величине, но одинаково указывают на характер скошенности. В пакетах прикладных программ для статистического анализа при расчете асимметрии используют последнюю формулу.
Эксцесс
Итак, мы рассмотрели три из четырех групп показателей, с помощью которых описываются распределения численностей. Последней из них является группа показателей островершинности, или эксцесса. Для вычисления одного из возможных показателей эксцесса используется следующая формула:
.
Величина эксцесса для нормальной (гауссовой) кривой распределения, играющей в статистике, так же как и в теории вероятностей большую роль, равна 3. Исходя из целого ряда соображений заостренность этой кривой принимают за стандарт, и поэтому в качестве показателя эксцесса используют величину γ=Ех - 3.
Эксцесс может принимать очень большие значения, , но он не может быть меньше единицы. Оказывается, что если распределение двувершинно (бимодально), то значение эксцесса близко к единице, так что γ близко к -2. Экспериментально установлено, что если значение γ меньше -1,4 , то можно быть уверенным, что имеющееся в нашем распоряжении распределение по крайней мере бимодально. Это особенно важно учитывать, когда эспериментальные данные, минуя стадию предварительной обработки, анализируются с помощью ЭВМ и перед глазами исследователя нет графического изображения распределения численностей.
Работа с качественными переменными
Количественная оценка результатов эксперимента.
Явления, интересующие исследователя, должны изучаться в их взаимосвязи, в зависимости от их структуры, соотношений, в которых они находятся между собой и пр. Для целостного изучения явлений, статистика выработала показатели, известные под названием показателей относительной доли или показателей структуры и показателей соотношения. Эти показатели даются в процентах, промилле, продецимилле и т. д.
Так как наблюдаемый признак в каждом отдельном случае может быть, а может не быть, то такие признаки называются альтернативными, а их обозначение при помощи статистических показателей и анализ этих показателей называется альтернативным анализом.