Файл: Литература 25 Краткая история развития эргономики 27.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 1000
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Эргономика и ее место в системе наук
Краткая история развития эргономики
Принципы эргономического анализа трудовой деятельности
5. Эргономические основы проектирования техники
Эргономические основы организации рабочего места
Оптимизация средств и систем отображения информации
Оптимизация рабочих движений и органов управления
Учет факторов среды при оптимизации системы «человек—машина»
____________________________
6 Структура искажения — строение изображения, возникающего на индикаторе при единичном сбое в цепях коммутации и не предназначенного для высвечивания информации.
7 Структура нормально отображаемого знака — строение изображения знака, предназначенного для высвечивания информации.
Величина контраста между знаком и фоном должна быть не менее 60%. Расчет и измерение контраста должны производиться по специальной методике.
Минимальные угловые размеры знака должны быть не менее 12 мин; максимальные — не более 46 мин. Максимальный угол обзора при размерах цифр 46 угл./мин не должен превышать ±50°, при размерах цифр 12 угл./мин ±30°. (Знаки ± обозначают любые противоположные углы обзора относительно линии, перпендикулярной к рабочей поверхности индикатора.)
Допустимая неравномерность яркости свечения отдельных элементов одного и того же индикатора не должна отличаться от номинального значения более чем на ±10%. Расчет неравномерности яркости свечения элементов одного и того же индикатора и отдельных индикаторов табло должен производиться по специальной методике.
Допуск на яркость не зависит от цвета свечения индикатора. Допустимые величины отклонения яркости от номинального значения должны соответствовать приведенным в табл. 7.
Оптимальные условия восприятия обеспечиваются при параметрах, приведенных в табл. 8. Уровни освещенности и углы обзора, меньшие приведенных в указанной таблице величин, а также более высокие яркости индикатора—оптимальные условия восприятия не нарушают, в связи с чем могут быть использованы при конструировании и эксплуатации табло коллективного пользования наравне с указанными.При цветовом кодировании информации величина яркости индикаторов зеленого цвета свечения не должна превышать яркость индикаторов голубого, красного и желтого цветов свечения.
Допустимое соотношение яркости рабочих и нерабочих элементов индикатора должно быть не менее 7—8 раз. Допустимые соотношения яркости рабочих и нерабочих элементов индикатора должны соответствовать приведенным в табл. 9. Значения яркости нерабочих элементов индикатора, указанные табл. 9, допускаются также при более высоких уровнях внешней освещенности и яркости знака.
Яркость и контраст индикаторов зеленого, голубого, красного и желтого свечения, применяемых в одном табло, должны быть равными.
Уровни яркости индикаторов, указанные в табл. 7, могут быть снижены при снижении внешней освещенности.
Допустимые значения яркости при различных уровнях внешней освещенности должны соответствовать приведенным в табл. 10.
Освещенности, меньшие приведенных в табл. 8 значений, а также более высокие уровни яркости оптимальные условия восприятия не нарушают, в связи с чем могут быть использованы при конструировании и эксплуатации табло коллективного пользования наравне с указанными. Уровни яркости индикатора, указанные в табл. 8, могут быть снижены, а освещенность — увеличена при уменьшении коэффициента отражения рабочей поверхности индикатора.
Допустимые значения яркости и освещенности при различных коэффициентах отражения рабочей поверхности индикатора должны соответствовать приведенным в табл. 10.
Освещенности, меньшие приведенных в табл. 10 значений, а также более высокие уровни яркости индикатора оптимальные условия восприятия не нарушают, в связи с чем могут быть использованы при конструировании и эксплуатации табло коллективного пользования наравне с указанными.
Величина коэффициента отражения рабочей поверхности индикатора должна определяться по специальной методике.
Общие требования к табло определяются совокупностью требований, предъявляемых к эксплуатации табло и управляющему оборудованию.
Допускается применение 5- и 6-элементных индикаторов 1-го класса в табло, основным требованием к которым является минимальный объем управляющей аппаратуры, не требуется помехозащищенности от единичного сбоя в цепях коммутации и допускается удовлетворительное или непривычное начертание цифр.
Допускается применение 7-, 8-, 9- и 10-элементных индикаторов 2-го класса табло, для которых основным требованием является привычность начертания цифр, а объем управляющей аппаратуры и помехозащищенность имеют менее существенное значение.
Допускается применение 6- и 7-элементных индикаторов 2-го класса в табло, для которых необходимо обнаружение помехи приограниченном объеме управляющей аппаратуры и удовлетворительной привычности начертания цифр.
Допускается применение 8-, 9- и 10-элементных индикаторов 2-го класса, для которых необходимо обнаружение помехи при привычном начертании цифр и не преследуется жесткое ограничение объема управляющей аппаратуры.
Допускается применение 7- и 8-элементных индикаторов 3-го класса в табло, для которых первостепенное значение имеет возможность обнаружения помехи и восстановления оператором исходной информации при ограниченном объеме управляющей аппаратуры и удовлетворительной привычности начертания цифр.
Допускается применение 9- и 10-элементных индикаторов 3-го класса в табло, для которых первостепенное значение имеет возможность обнаружения помехи и восстановления исходной информации при привычном начертании цифр и не преследуется жесткое ограничение объема управляющей аппаратуры.
Индикаторы с размером цифр 40 мм применяются в табло, рассчитанные на прием информации с дистанций от 3 до 12 м. Индикаторы с размерами цифр 60 мм применяются в табло, рассчитанные на прием информации с дистанций от 4,5 до 18,0 м. Индикаторы с размерами цифр 80 мм применяются в табло, рассчитанные на прием информации с дистанций от 6 до 24 м.
Максимальная глубина «утопленности» знака по отношению к плоскости информационного поля табло [плоскость, образованная рабочими поверхностями отдельных индикаторов] должна составлять не более 5 мм.
Расстояние между строками табло, измеряемое по вертикали от нижней кромки знака в верхней строке до верхней кромки знака в нижней, должно быть не менее 1,0—1,5 высоты знака.
Расстояние между столбцами, измеряемое по горизонтали от боковой кромки знака в одном столбце до боковой кромки знака в другом, должно быть не более ширины знака.
Для цветового кодирования информации могут использоваться индикаторы зеленого, голубого, красного и желтого цветов свечения. При этом яркость знака и контраст на применяемых индикаторах должны быть равными.
Рекомендуется применять в табло индикаторы только одной группы яркости для каждой группы цвета свечения. Допускается применять в табло индикаторы разных групп яркости при условии обеспечения яркости табло в пределах одной группы яркости. При необходимости яркостного кодирования отображаемой информации допускается применение в одном табло индикаторов различных групп яркости. Источники освещения не должны создавать бликов на рабочих поверхностях индикаторов табло.
§10. Методы трехмерной индикации
В технике отображения информации пространственные признаки ситуации крайне невыразительны. Операторам на основании этих признаков или каких-либо априорных сведений приходится самим дополнять двухмерное отображение ситуации собственными представлениями о пространстве, в котором находятся или перемещаются управляемые объекты. Естественно, что эти представления характеризуются большей или чаще меньшей полнотой с точки зрения их адекватности задачам управления.
Все чаще появляются сообщения о ведущихся поисках в области создания трехмерных индикаторов [17, 18]. На создание таких индикаторов направлено сейчас множество разработок: от наиболее простых вариантов, например механическое устройство для рисования в трех измерениях, где для двух измерений используются два пера с разными чернилами, а для третьего — глубины — изменение расстояния между перьями [3], до наиболее сложных, например голографических методов отображения информации.
Трехмерные индикаторы делятся на три основные группы: 1) объемные, 2) «иллюзорные» и 3) изобразительные, хотя действительно трехмерны только объемные индикаторы, где воспроизводятся ширина, высота и глубина [21]. Изобразительные индикаторы — самые простые из этих групп: это обычные двумерные индикаторы, в которых для обозначения третьего измерения применяются символы.
В иллюзорных индикаторах используются только два измерения, а впечатление объемности создается благодаря стереоскопическому эффекту. Такие индикаторы бывают панорамными и с двойными изображениями. Перспективным методом трехмерной индикации с использованием двойных изображений является ксография, дающая возможность осуществлять фотографирование и печатание предметов с воспроизведением глубины. Процесс ксографии заключается в использовании специальной камеры и сетки, помещенной перед пленкой и делящей изображение на ряд вертикальных полос. После обычного проявления и печатания пленка покрывается рядом специальных пластмассовых полосок, позволяющих наблюдателю видеть каждым глазом различное изображение, что и создает эффект объемности.
В объемных индикаторах для трехмерного воспроизведения применяют специальные индикаторные устройства: электронно-лучевые трубки с вибрирующим экраном, дающим возможность воспроизводить изображение глубины; системы, создающие ионизацию таза, локальное возбуждение которого происходит в нужных точках трехмерной координационной матрицы; объемные гистограммы.
Каждый из описываемых методов обладает рядом недостатков: электромеханические проблемы, связанные с креплением экрана, сложности, связанные с обеспечением памяти и коммутации, с возможностью быстрой смены информации,— все это создает определенные трудности использования их в системах предъявления информации.
Одним из современных перспективных методов трехмерной индикации является метод голографии — процесс фотографической записи интерференционной картины, дающий объемное изображение объекта в результате расщепления лазерного луча на две части, одна из которых освещает непосредственно пленку [опорный луч], а другая — объект, световые волны от которого отражаются на пленку, складываясь со световой волной опорного луча. При освещении лучами лазера проявленной фотопластинки восстанавливается изображение первоначальной картины во всей ее глубине.
Впечатление трехмерности настолько правдоподобно, что наблюдателю хочется потрогать отображенный объект руками. Голограмма одинаково четко изображает как далекие, так и близкие предметы. Замечательное свойство голограмм состоит в том, что при их освещении создается впечатление реальности видимого изображения, более того, изменяя свое положение, наблюдатель может заглянуть за лежащие на переднем плане предметы точно так же, как при восприятии реальной картины. Использование голографии наиболее эффективно при отображении информации об отдельных объектах или небольших группах, когда необходима высокая степень точности воспроизведения.
По сравнению с проектированием все более совершенных средств индикации проектирование и конструирование органов управления к трехмерным системам индикации значительно отстают. Отсутствуют достаточно квалифицированная инженернопсихологическая и эргономическая оценка и экспертиза вновь создаваемых органов управления. В результате создается несоответствие между новейшими средствами индикации, такими, как трехмерные индикаторы, и органами управления.
При работе с электронно-лучевыми индикаторами для решения задач обнаружения, опознания, слежения обычно используются три типа устройств: 1) световое перо, 2) ручка управления, 3) шариковый регулятор.
Световое перо — это фотоэлектрический датчик, который служит для считывания информации непосредственно с индикатора. Основное достоинство такого устройства — быстрота реакции. Оператор должен лишь направить его в нужную точку на индикаторе и нажать кнопку включения, а вычислительная машина, получая; информацию от светового пера, автоматически определяет координаты цели. Световое перо применяется для приближенного быстрого указания положения цели, когда точность не является критичным параметром.
Ручка управления представляет собой рычаг, который может перемещаться в двух координатах по X и Y. Она снабжена датчиками, работающими в двух режимах: 1) вращения (след на экране перемещается в указанном направлении с постоянной скоростью), 2) пропорционального перемещения (след перемещается на расстояние, пропорциональное величине перемещения ручки управления).
Перемещение ручки индицируется на экране движением специального символа (эхо-сигнала), показывающего оператору, какому участку экрана соответствует положение органа управления. Ручка управления может перемещаться с высокой скоростью на сравнительно большое расстояние.