Файл: Учебное пособие по дисциплине Механика Модуль Прикладная механика.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 730

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ОГЛАВЛЕНИЕ

7.2.Изгиб с растяжением (сжатием)………………….……………………………….92

7.3.Внецентренное сжатие или растяжение………………….………………………93

7.4.Критерии предельного состояния материала при сложном напряженном состоянии………………….…………….… ………………………………………..………….95

Вопросы для самопроверки……………………………………………………………99

8.Прочность при переменных и циклически изменяющихся напряжениях…………………………………………………………………………….100

8.1.Усталость и выносливость материалов…………………….……………………100

8.2.Основные характеристики цикла и предел усталости……………….…………102

8.3.Расчет коэффициентов запаса усталостной прочности………………….……...104

Библиографический список………………………………………………..………152

ВВЕДЕНИЕ

АННОТАЦИЯ ДИСЦИПЛИНЫМЕХАНИКА. МОДУЛЬ ПРИКЛАДНАЯ МЕХАНИКА

Рис. 1.7. Виды сопротивлений:

1.9. Общие принципы расчета конструкции

Вопросы для самопроверки

2. Виды испытаний материалов

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

3. Осевое растяжение – сжатие.

4. Геометрические характеристики плоских сечений

5. Кручение, сдвиг, срез

5.1. Основные понятия. Крутящий момент

 Условие прочности при кручении вала круглого и кольцевого сечения

Общие сведения

7.1.Расчет балки, подверженной косому или пространственному изгибу

7.2. Изгиб с растяжением (сжатием)

8. Прочность при переменных и циклически изменяющихся напряжениях

8.1. Усталость и выносливость материалов

БИБЛИОГРАФИЧЕСКИЙ СПИСОК



На рис. 9.13 показаны цилиндрические колеса с внешним зацеплением, а на рис. 9.14 изображены цилиндрические колеса с внутренним зацеплением, где зубья одного из колес расположены по внутренней поверхности.


Рис. 9.13. Зубчатый механизм с внешним зацеплением

 



Рис. 9.14. Зубчатый механизм с внутренним зацеплением

 

Наряду с прямозубыми, широкое распространение получили зубчатые колеса с косыми и шевронными зубьями.

Зубчатая передача с реечным зацеплением имеет в составе зубчатую рейку 1 и зубчатое колесо 2  (рис. 9.15).

 



Рис.9.15. Зубчатый механизм с реечным зацеплением
Специальные многоступенчатые передачи имеют некоторые зубчатые колеса с подвижными осями (рис. 9.16). Здесь на подвижной оси О2 находится колесо 2, которое при вращении водила Н  вокруг центральной оси О1 обегает неподвижное (опорное) колесо 3 и вращается вокруг собственной оси.

 



Рис. 9.16. Планетарный зубчатый механизм

 

Колеса 1 и 3 называются центральными колесами (солнечным и корончатым), колесо 2 сателлит или планетарное колесо. Рассматриваемая зубчатая передача называется  планетарной  и имеет одну степень  подвижности, т.к. имеется неподвижное колесо 3. Достаточно задать закон движенияодному звену, чтобы все остальные звенья двигались определенно и целесообразно.

Иными словами работу передачи следует описать так: центральное колесо 1 сообщает движение сателлиту 2, который обкатывается по колесу 3 и увлекает за собой по часовой стрелке водило.

Планетарные передачи компактны и используются для значительного уменьшения числа оборотов на выходе, при этом передаточные отношения мо­гут быть более тысячи,

Планетарные передачи, в которых все колеса подвижны, обладают двумя степенями подвижности и называются дифференциальными передачами (рис. 9.17). Такая передача должна иметь заданными законы движения двух звеньев.





Рис. 9.17. Дифференциальный механизм

 

К зубчатым передачам относятся и устройства прерывистого движения: храповые механизмы, мальтийские механизмы и другие.

 

Храповые механизмы
Храповые механизмыотносятся к механизмам прерывистого действия, которые обеспечивают движения ведомого звена в одном направлении с периодическими остановками. Конструк­тивно храповые механизмы делятся на не­реверсивные с внутренним зацеплением и с храповым колесом, а также реверсивные в виде зубчатой рейки.

Нереверсивный храповый механизм с внутренним зацеплением (рис. 9.18).Веду­щим звеном может быть как храповое ко­лесо внутреннего зацепления 1, соединен­ное с зубчатым колесом внешнего зацепле­ния, так и втулка с закрепленной на ней собачкой 3, подпружиненной к зубьям храпового колеса 1 пружиной 2.


Рис. 9.18. Нереверсивный храповый механизм с внутренним зацеплени­ем:

1 — храповое колесо; — пру­жина; 3 — собачка; — втулка
В нереверсивных механизмах (рис. 9.19) храповое колесо выполняют в виде рейки в направляющих, и тогда собачка сообщает рейке с храпо­вым зубом прерывистое прямолинейное движение. В этом случае преду­сматривает устройство, которое возвращает рейку в начальное положение.



Рис. 9.19. Нереверсивный храповый механизм:           

1 - рейка; 2 - собачка                                            

 



Рис. 9.20. Реверсивный храповый механизм:

1- храповик; 2 - ведущий рычаг; 3 - собачка

 

Реверсивные храповые механизмы (рис. 9.20) имеют: храповое колесо с  зубьями эвольвентного профиля, а на ведущем рычаге шарнирно устанав­
ливают собачку 3,  которую при необходимости реверса перебрасывают во­круг оси Ох.
Механизмы с гибкими звеньями
Ременные передачи

Механизмы с гибкими звеньями применяются при значительных межосевых расстояниях. 

 



 

Рис. 9.21.  Открытая ременная передача

 

На рис.9.21 показан простейший пример открытой ременной передачи, у которой вращение шкивов 1 и 2происходит в одном и том же направлении.

Передача ремнем осуществляется за счет трения возникающего между шкивом и ремнем. Ременьможет быть плоскийклиновойили зубчатый.

Все механические передачи характеризуются передаточным числом или отношением. Рассмотрим работу двух элементов передачи, один из которых будет ведущим, а второй — ведомым.

Введем следующие обозначения: ω1 и п1 — угло­вая скорость и частота вращения ведущего вала, выраженные соответственно рад/с и об/мин; ω1 и п2 — угловая скорость и частота вращения ведомого вала; D1и D2 - диаметры вращающихся деталей (шкивов, катков и т. п.); v1 и v2 — окружные скоро­сти, м/с.

Отношение диаметров ведомого элемента пере­дачи к ведущему называют передаточным числом



Если известны параметры передачи — диаметры D1и D2или числа зубьев z1и z2передаточное число и определяем следующим образом.

Для зубчатых передач передаточное число и — отношение числа зубьев ведомого колеса к числу зубьев ведущего колеса, т.е. и = z2/z1, где z2и z1 — числа зубьев соответственно ведомого и ведущего колеса.

Итак, передаточное число



 (обратите внимание на индексы у букв ωп, и z)u=D2/D1 относится к фрикционной передаче без учета скольжения.

Отношение угловых скоростей ведущего ω1  и ведомого ω
2 звеньев называют также передаточным отношением и обозначают  і.

В передаче, понижающей частоту вращения n (угловую скорость ω), u>1; при и<1 частота вращения (угловая скорость) повышается. Понижение частоты вращения называют редуцированием, а закрытые передачи, понижающие частоты вращения,– редукторами. Устройства, повышающие частоты вращения, называют ускорителями или мультипликаторами. Передачи выполняют с постоянным, переменным или регулируемым передаточным отношением. Изменение передаточного отношения может быть ступенчатым(коробка передач) и бесступенчатым(вариаторы).

 В приводах с большим передаточным числом (до и= 1000 и выше), со­ставленных из нескольких последовательно соединенных передач (много­ступенчатые передачи), передаточное число равно произведению переда­точных чисел каждой ступени передачи, т. е.



Передача мощности от ведущего вала к ведомому всегда сопровожда­ется потерей части передаваемой мощности вследствие наличия вредных со­противлений (трения в движущихся частях, сопротивления воздуха и др.).

Если Р1 — мощность на ведущем валу, Р2— на ведомом валу, то Р1Р2.

Отношение значений мощности на ведомом валу к мощности на веду­щем валу называют механическим коэффициентом полезного действия (КПД) и обозначают буквой η:



Общий КПД многоступенчатой последовательно соединенной переда­чи определяют по формуле



где    — КПД, учитывающие потери в отдельных кинематических парах передачи.

КПД характеризует качество передачи. Потеря мощности – показатель непроизводительных затрат энергии – косвенно характеризует износ деталей передачи, так как потерянная в передаче мощность превращается в теплоту и частично идет на разрушение рабочих поверхностей.

С уменьшением полезной нагрузки КПД значительно снижается, так как возрастает относительное влияние постоянных потерь (близких к потерям холостого хода), не зависящих от нагрузки;