Файл: Учебник Трофимова Курс физики.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.07.2020

Просмотров: 34395

Скачиваний: 521

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Предисловие

Введение

Предмет физики и ее связь с другими науками

Единицы физических величин

1 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Глава 1 Элементы кинематики

§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения

§ 2. Скорость

§ 3. Ускорение и его составляющие

§ 4. Угловая скорость и угловое ускорение

Глава 2 Динамика материальной точки и поступательного движения твердого тела

§ 5. Первый закон Ньютона. Масса. Сила

§ 6. Второй закон Ньютона

§ 7. Третий закон Ньютона

§ 8. Силы трения

§ 9. Закон сохранения импульса. Центр масс

§ 10. Уравнение движения тела переменной массы

Глава 3 Работа и энергия

§11. Энергия, работа, мощность

§ 12. Кинетическая и потенциальная энергии

§ 13. Закон сохранения энергии

§ 14. Графическом представление энергии

§ 15. Удар абсолютно упругих и неупругих тел

Глава 4 Механика твердого тела

§ 16. Момент инерции

§ 17. Кинетическая энергия вращения

§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела

§ 19. Момент импульса и закон то сохранения

§ 20. Свободные оси. Гироскоп

§ 21. Деформации твердого тела

Глава 5 Тяготение. Элементы теории поля

§ 22. Законы Кеплера. Закон всемирного тяготения

§ 23. Сила тяжести и вес. Невесомость

§ 24. Поле тяготения и то напряженность

§ 25. Работа в поле тяготения. Потенциал поля тяготения

§ 26. Космические скорости

§ 27. Неинерциальные системы отсчета. Силы инерции

Глава 6 Элементы механики жидкостей

§ 28. Давление в жидкости и газе

§ 29. Уравнение неразрывности

§ 30. Уравнение Бернулли и следствия из него

§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей

§ 32. Методы определения вязкости

§ 33. Движение тел в жидкостях и газах

Глава 7 Элементы специальной (частной) теории относительности

§ 34. Преобразования Галилея. Механический принцип относительности

§ 35. Постулаты специальной (частной) теории относительности

§ 36. Преобразования Лоренца

§ 37. Следствия из преобразований Лоренца

§ 38. Интервал между событиями

§ 39. Основной закон релятивистской динамики материальной точки

§ 40. Закон взаимосвязи массы и энергии

2 ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ

Глава 8 Молекулярно-кинетическая теория идеальных газов

§ 41. Статистический и термодинамический методы. Опытные законы идеального газа

§ 42. Уравнение Клапейрона — Менделеева

§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов

§ 44. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения

§ 45. Барометрическая формула. Распределение Больцмана

§ 46. Среднее число столкновений и средняя длина свободного пробега молекул

§ 47. Опытное обоснование молекулярно-кинетической теории

§ 48. Явления переноса в термодинамически неравновесных системах

§ 48. Вакуум и методы его получения. Свойства ультраразреженных газов

Глава 9 Основы термодинамики

§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул

§ 51. Первое начало термодинамики

§ 52. Работа газа при изменении его объема

§ 53. Теплоемкость

§ 54. Применение первого начала термодинамики к изопроцессам

§ 55. Адиабатический процесс. Политропный процесс

§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы

§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

§ 58. Второе начало термодинамики

§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа

Задачи

Глава 10 Реальные газы, жидкости и твердые тела

§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия

§ 61. Уравнение Ван-дер-Ваальса

§ 62. Изотермы Ван-дер-Ваальса и их анализ

§ 63. Внутренняя энергия реального газа

§ 64. Эффект Джоуля — Томсона

§ 65. Сжижение газов

§ 66. Свойства жидкостей. Поверхностное натяжение

§ 67. Смачивание

§ 68. Давление под искривленной поверхностью жидкости

§ 69. Капиллярные явления

§ 70. Твердые тела. Моно- и поликристаллы

§ 71. Типы кристаллических твердых тел

§ 72. Дефекты в кристаллах

§ 73. Теплоемкость твердых тел

§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела

§ 75. Фазовые переходы I и П рода

§ 76. Диаграмма состояния. Тройная точка

Задачи

3 ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ

Глава 11 Электростатика

§ 77. Закон сохранения электрического заряда

§ 78. Закон Кулона

§ 79. Электростатическое поле. Напряженность электростатического поля

§ 80. Принцип суперпозиции электростатических полей. Поле диполя

§ 81. Теорема Гаусса для электростатического поля в вакууме

§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме

§ 83. Циркуляция вектора напряженности электростатического поля

§ 84. Потенциал электростатического поля

§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности

§ 86. Вычисление разности потенциалов по напряженности поля

§ 87. Типы диэлектриков. Поляризация диэлектриков

§ 88. Поляризованность. Напряженность поля в диэлектрике

§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике

§ 90. Условия на границе раздела двух диэлектрических сред

§ 91. Сегнетоэлектрики

§ 92. Проводники в электростатическом поле

§ 93. Электрическая емкость уединенного проводника

§ 94. Конденсаторы

§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля

Задачи

Глава 12 Постоянный электрический ток

§ 96. Электрический ток, сила и плотность тока

§ 97. Сторонние силы. Электродвижущая сила и напряжение

§ 98. Закон Ома. Сопротивление проводников

§ 99. Работа и мощность тока. Закон Джоуля — Ленца

§ 100. Закон Ома для неоднородного участка цепи

§ 101. Правила Кирхгофа для разветвленных цепей

Задачи

Глава 13 Электрические токи в металлах, вакууме и газах

§ 102. Элементарная классическая теория электропроводности металлов

§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов

§ 104. Работа выхода электронов из металла

§ 105. Эмиссионные явления и их применение

§ 106. Ионизация газов. Несамостоятельный газовый разряд

§ 107. Самостоятельный газовый разряд и его типы

§ 108. Плазма и ее свойства

Задачи

Глава 14 Магнитное поле

§ 109. Магнитное поле и его характеристики

§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля

§ 111. Закон Ампера. Взаимодействие параллельных токов

§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля

§ 113. Магнитное поле движущегося заряда

§ 114. Действие магнитного поля на движущийся заряд

§ 115. Движение заряженных частиц в магнитном поле

§ 116. Ускорители заряженных частиц

§ 117. Эффект Холла

§ 118. Циркуляция вектора В магнитного поля в вакууме

§ 119. Магнитные поля соленоида и тороида

§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля В

§ 121. Работа по перемещению проводника и контура с током в магнитном поле

Задачи

Глава 15 Электромагнитная индукция

§122. Явление электромагнитной индукции (опыты Фарадея)

§ 123. Закон Фарадея и его вывод из закона сохранения энергии

§ 124. Вращение рамки в магнитном поле

§ 125. Вихревые токи (токи Фуко)

§ 126. Индуктивность контура. Самоиндукция

§ 127. Токи при размыкании и замыкании цепи

§ 128. Взаимная индукция

§ 129. Трансформаторы

§ 130. Энергия магнитного поля

Глава 16 Магнитные свойства вещества

§ 131. Магнитные моменты электронов и атомов

§ 132. Диа- и парамагнетизм

§ 133. Намагниченность. Магнитное поле в веществе

§ 134. Условия на границе раздела двух магнетиков

§ 135. Ферромагнетики и их свойства

§ 136. Природа ферромагнетизма

Глава 17 Основы теории Максвелла для электромагнитного поля

§ 137. Вихревое электрическое поле

§ 138. Ток смещения

§ 139. Уравнения Максвелла для электромагнитного поля

4 КОЛЕБАНИЯ И ВОЛНЫ

Глава 18 Механические и электромагнитные колебания

§ 140. Гармонические колебания и их характеристики

§ 141. Механические гармонические колебания

§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники

§ 143. Свободные гармонические колебания в колебательном контуре

§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

§ 145. Сложение взаимно перпендикулярных колебаний

§ 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания

§ 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение

§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс

§ 148. Переменный ток

§ 150. Резонанс напряжений

§ 151. Резонанс токов

§ 152. Мощность, выделяемая в цепи переменного тока

Глава 19 Упругие волны

§ 153. Волновые процессы. Продольные и поперечные волны

§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение

§ 155. Принцип суперпозиции. Групповая скорость

§ 156. Интерференция волн

§ 157. Стоячие волны

§ 158. Звуковые волны

S 159. Эффект Доплере в акустике

§ 160. Ультразвук и его применение

Глава 20 Электромагнитные волны

§ 161. Экспериментальное получение электромагнитных волн

§ 162. Дифференциальное уравнение электромагнитной волны

§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля

§ 164. Излучение диполя. Применение электромагнитных волн

5 ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ

Глава 21 Элементы геометрической и электронной оптики

§ 165. Основные законы оптики. Полное отражение

§ 166. Тонкие линзы. Изображение предметов с помощью линз

§ 187. Аберрации (погрешности) оптических систем

§ 168. Основные фотометрические величины и их единицы

§ 189. Элементы электронной оптики

Глава 22 Интерференция света

§ 170. Развитие представлений о природе света

§ 171. Когерентность и монохроматичность световых волн

§ 172. Интерференция света

§ 173. Методы наблюдения интерференции света

§ 174. Интерференция света в тонких пленках

§ 175. Применение интерференции света

Глава 23 Дифракция света

§ 176. Принцип Гюйгенса — Френеля

§ 177. Метод зон Френеля. Прямолинейное распространение света

§ 178. Дифракция Френеля на круглом отверстии и диске

§ 178. Дифракция Фраунгофера на одной щели

§ 180. Дифракция Фраунгофера на дифракционной решетке

§ 181. Пространственная решетка. Рассеяние света

§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов

§ 183. Разрешающая способность оптических приборов

§ 184. Понятие о голографии

Глава 24 Взаимодействие электромагнитных волн с веществом

§ 185. Дисперсия света

§ 186. Электронная теория дисперсии светя

§ 187. Поглощение (абсорбция) света

§ 188. Эффект Доплера

§ 189. Излучение Вавилова — Черенкова

Глава 25 Поляризация света

§ 190. Естественный и поляризованный свет

§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков

§ 192. Двойное лучепреломление

§ 193. Поляризационные призмы и поляроиды

§ 194. Анализ поляризованного света

§ 195. Искусственная оптическая анизотропия

§ 196. Вращение плоскости поляризации

Глава 26 Квантовая природа излучения

§ 197. Тепловое излучение и его характеристики

§ 188. Закон Кирхгофа

§ 199. Законы Стефана — Больцмана и смещения Вина

§ 200. Формулы Рэлея — Джинса и Планка

§ 201. Оптическая пирометрия. Тепловые источники света

§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта

§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света

§ 204. Применение фотоэффекта

§ 205. Масса и импульс фотона. Давление света

§ 206. Эффект Комптона и его элементарная теория

§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения

6 ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ

Глава 27 Теория атома водорода по Бору

§ 208. Модели атома Томсона и Резерфорда

§ 209. Линейчатый спектр атома водорода

§ 210. Постулаты Бора

§ 211. Опыты Франка и Герца

§ 212. Спектр атома водорода по Бору

Глава 28 Элементы квантовой механики

§ 213. Корпускулярно-волновой дуализм свойств вещества

§ 214. Некоторые свойства волн да Бройля

§ 215. Соотношение неопределенностей

§ 216. Волновая функция и ее статистический смысл

§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

§ 218. Принцип причинности в квинтовой механике

§ 219. Движение свободной частицы

§ 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»

§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект

§ 222. Линейный гармонический осциллятор в квантовой механике

Глава 29 Элементы современной физики атомов и молекул

§ 223. Атом водорода в квантовой механике

§ 224. 1s-Состояние электрона в атоме водорода

§ 225. Спин электрона. Спиновое квантовое число

§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны

§ 227. Принцип Паули. Распределение электронов в атоме по состояниям

§ 228. Периодическая система элементов Менделеева

§ 229. Рентгеновские спектры

§ 230. Молекулы: химические связи, понятие об энергетических уровнях

§ 231. Молекулярные спектры. Комбинационное рассеяние света

§ 232. Поглощение. Спонтанное и вынужденное излучения

§ 233. Оптические квантовые генераторы (лазеры)

Глава 30 Элементы квантовой статистики

§ 234. Квантовая статистика. Фазовое пространство. Функция распределения

§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака

§ 236. Вырожденный электронный газ в металлах

§ 237. Понятие о квантовой теории теплоемкости. Фононы

§ 238. Выводы квантовой теории электропроводности металлов

§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона

Глава 31 Элементы физики твердого тела

§ 240. Понятие о зонной теории твердых тел

§ 241. Металлы, диэлектрики и полупроводники по зонной теории

§ 242. Собственная проводимость полупроводников

§ 243. Примесная проводимость полупроводников

§ 244. Фотопроводимость полупроводников

§ 245. Люминесценция твердых тел

§ 246. Контакт двух металлов по зонной теории

§ 247. Термоэлектрические явления и их применение

§ 248. Выпрямление на контакте металл — полупроводник

§ 249. Контакт электронного и дырочного полупроводников (p-n-переход)

§ 250. Полупроводниковые диоды и триоды (транзисторы)

7 ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Глава 32 Элементы физики атомного ядра

§ 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа

§ 252. Дефект массы и энергия связи ядра

§ 253. Спин ядра и его магнитный момент

§ 254. Ядерные силы. Модели ядра

§ 255. Радиоактивное излучение и его виды

§ 256. Закон радиоактивного распада. Правила смещения

§ 257. Закономерности -распада

§ 258. –-Распад. Нейтрино

§ 259. Гамма-излучение и его свойства

§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра*)

§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц

§ 262. Ядерные реакции и их основные типы

§ 263. Позитрон. +-Распад. Электронный захват

§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов

§ 265. Реакция деления ядра

§ 266. Цепная реакция деления

§ 267. Понятие о ядерной энергетике

§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций

Глава 33 Элементы физики элементарных частиц

§ 269. Космическое излучение

§ 270. Мюоны и их свойства

§ 271. Мезоны и их свойства

§ 272. Типы взаимодействий элементарных частиц

§ 273. Частицы и античастицы

§ 274. Гипероны. Странность и четность элементарных частиц

§ 275. Классификация элементарных частиц. Кварки

ЗАКЛЮЧЕНИЕ

Естественный свет можно преобразовать в плоскополяризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направле­ния (например, пропускающие колебания, параллельные главной плоскости поляриза­тора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е, например кристаллы (их анизотропия известна, см. § 70). Из природных кристаллов, давно используемых в качестве поляризатора, следует от­метить турмалин.

Рассмотрим классические опыты с турмалином (рис. 273). Направим естественный свет перпендикулярно пластинке турмалина T1, вырезанной параллельно так называ­емой оптической оси ОО' (см. § 192). Вращая кристалл T1 вокруг направления луча, никаких изменений интенсивности прошедшего через турмалин света не наблюдаем. Если на пути луча поставить вторую пластинку турмалина T2 и вращать ее вокруг направления луча, то интенсивность света, прошедшего через пластинки, меняется в зависимости от угла к между оптическими осями кристаллов по закону Малюса*:

(190.1)

где I0 и I — соответственно интенсивности света, падающего на второй кристалл и вышедшего из него.

* Э. Малюс (1775—1812) — французский физик.


Следовательно, интенсивность прошедшего через пластинки света изменится от минимума (полное гашение света) при =/2 (оптические оси пластинок перпендикулярны) да максимума при =0 (оптические оси пластинок парал­лельны). Однако, как это следует из рис. 274, амплитуда Е световых колебаний, прошедших через пластинку Т2, будет меньше амплитуды световых колебаний Е0, падающих на пластинку T2.

Так как интенсивность света пропорциональна квадрату амплитуды, то и получается выражение (190.1).

Результаты опытов с кристаллами турмалина объясняются довольно просто, если исходить из изложенных выше условий пропускания света поляризатором. Первая пластинка турмалина пропускает колебания только определенного направления (на рис. 273 это направление показано стрелкой ), т. е. преобразует естественный свет в плоскополяризованный. Вторая же пластинка турмалина в зависимости от ее ориен­тации из поляризованного света пропускает большую или меньшую его часть, которая соответствует компоненту Е, параллельному оси второго турмалина. На рис. 273 обе пластинки расположены так, что направления пропускаемых ими колебаний АВ и А'В' перпендикулярны друг другу. В данном случае Т1 пропускает колебания, направленные по АВ, а Т2 их полностью гасит, т.е. за вторую пластинку турмалина свет не проходит.

Пластинка Т1, преобразующая естественный свет в плоскополяризованный, являет­ся поляризатором. Пластинка Т2, служащая для анализа степени поляризации света, называется анализатором. Обе пластинки совершенно одинаковы (их можно поменять местами).


Если пропустить естественный свет через два поляризатора, главные плоскости которых образуют угол , то из первого выйдет плоскополяризованный свет, интенсив­ность которого I0=1/2Iест, из второго, согласно (190.1), выйдет свет интенсивностью I=I0cos2 . Следовательно, интенсивность света, прошедшего через два поляризатора,

откуда I0=1/2Iест (поляризаторы параллельны) и Imin = 0 (поляризаторы скрещены).

§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков

Если естественный свет падает на границу раздела двух диэлектриков (например, воздуха и стекла), то часть его отражается, а часть преломляется в распространяется во второй среде. Устанавливая на пути отраженного и преломленного лучей анализатор (например, турмалин), убеждаемся в том, что отраженный и преломленный лучи частично поляризованы: при поворачивании анализатора вокруг лучей интенсивность света периодически усаливается и ослабевает (полного гашения не наблюдается!). Дальнейшие исследования показали, что в отраженном луче преобладают колебания, перпендикулярные плоскости падения (на рис. 275 они обозначены точками), в прелом­ленном — колебания, параллельные плоскости падения (изображены стрелками).

Степень поляризации (степень выделения световых волн с определенной ориентаци­ей электрического (и магнитного) вектора) зависит от угла падения лучей и показателя преломления. Шотландский физик Д. Брюстер (1781—1868) установил закон, согласно которому при угле падения iB (угол Брюстера), определяемого соотношением

(n21 показатель преломления второй среды относительно первой), отраженный луч является плоскополяризованным (содержит только колебания, перпендикулярные плос­кости падения) (рис. 276). Преломленный же луч при угле падения iB поляризуется максимально, но не полностью.

Если свет падает на границу раздела под углом Брюстера, то отраженный и прело­мленный лучи взаимно перпендикулярны (tgiB = siniB/cosiB, n21=siniB/sini2 (i2 угол преломления), откуда cosiB=sini2). Следовательно, iB + i2 = /2, но i’B = iB (закон от­ражения), поэтому i’B + i2 = /2.

Степень поляризации отраженного и преломленного света при различных углах падения можно рассчитать из уравнений Максвелла, если учесть граничные условия для электромагнитного поля на границе раздела двух изотропных диэлектриков (так называемые формулы Френеля).

Степень поляризации преломленного света может быть значительно повышена (многократным преломлением при условии падения света каждый раз на границу раздела под углом Брюстера). Если, например, для стекла (п= 1,53) степень поляриза­ции преломленного луча составляет 15%, то после преломления на 8—10 наложен­ных друг на друга стеклянных пластинок вышедший из такой системы свет будет практически полностью поляризованным. Такая совокупность пластинок называется стопой. Стопа может служить для анализа поляризованного света как при его отраже­нии, так и при его преломлении.


§ 192. Двойное лучепреломление

Все прозрачные кристаллы (кроме кристаллов кубической системы, которые оптически изотропны) обладают способностью двойного лучепреломления, т. е. раздваивания каждого падающего на них светового пучка. Это явление, в 1669 г. впервые обнаружен­ное датским ученым Э. Бартолином (1625—1698) для исландского шпата (разновид­ность кальцита СаСОз), объясняется особенностями распространения света в анизот­ропных средах и непосредственно вытекает из уравнений Максвелла.

Если на толстый кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу (рис. 277). Даже в том случае, когда первичный пучок падает на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется (рис. 278). Второй из этих лучей получил название необыкновенного (e), а первый — обыкновенного (о).

В кристалле исландского шпата имеется единственное направление, вдоль которого двойное лучепреломление не наблюдается. Направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного луче­преломления, называется оптической осью кристалла. В данном случае речь идет именно о направлении, а не о прямой линии, проходящей через какую-то точку кристалла. Любая прямая, проходящая параллельно данному направлению, является оптической осью кристалла. Кристаллы в зависимости от типа их симметрии бывают одноосные и двуосные, т.е. имеют одну или две оптические оси (к первым и относится исландский шпат).

Исследования показывают, что вышедшие из кристалла лучи плоскополяризованы во взаимно перпендикулярных плоскостях. Плоскость, проходящая через направление луча света и оптическую ось кристалла, называется главной плоскостью (или главным сечением кристалла). Колебания светового вектора (вектора напряженности Е элект­рического поля) в обыкновенном луче происходят перпендикулярно главной плоскости, в необыкновенном — в главной плоскости (рис. 278).

Неодинаковое преломление обыкновенного и необыкновенного лучей указывает на различие для них показателей преломления. Очевидно, что при любом направлении обыкновенного луча колебания светового вектора перпендикулярны оптической оси кристалла, поэтому обыкновенный луч распространяется по всем направлениям с оди­наковой скоростью и, следовательно, показатель преломления no для него есть вели­чина постоянная. Для необыкновенного же луча угол между направлением колебаний светового вектора и оптической осью отличен от прямого и зависит от направления луча, поэтому необыкновенные лучи распространяются по различным направлениям с разными скоростями. Следовательно, показатель преломления пe необыкновенного луча является переменной величиной, зависящей от направления луча. Таким образом, обыкновенный луч подчиняется закону преломления (отсюда и название «обыкновен­ный»), а для необыкновенного луча этот закон не выполняется. После выхода из кристалла, если не принимать во внимание поляризацию во взаимно перпендикуляр­ных плоскостях, эти два луча ничем друг от друга не отличаются.


Как уже рассматривалось, обыкновенные лучи распространяются в кристалле по всем направлениям с одинаковой скоростью vo=c/no, а необыкновенные — с разной скоростью ve=с/пe (в зависимости от угла между вектором Е и оптической осью). Для луча, распространяющегося вдоль оптической оси, no=ne, vo=ve, т.е. вдоль оптической оси существует только одна скорость распространения света. Различие в ve и vo для всех направлений, кроме направления оптической оси, и обусловливает явление двойного лучепреломления света в одноосных кристаллах.

Допустим, что в точке S внутри одноосного кристалла находится точечный источ­ник света. На рис. 279 показано распространение обыкновенного и необыкновенного лучей в кристалле (главная плоскость совпадает с плоскостью чертежа, OO' — направ­ление оптической оси). Волновой поверхностью обыкновенного луча (он распространя­ется с vo=const) является сфера, необыкновенного луча (veconst) — эллипсоид враще­ния. Наибольшее расхождение волновых поверхностей обыкновенного и необыкновен­ного лучей наблюдается в направлении, перпендикулярном оптической оси. Эллипсоид и сфера касаются друг друга в точках их пересечения с оптической осью OO'. Если ve<vo (ne>no), то эллипсоид необыкновенного луча вписан в сферу обыкновенного луча (эллипсоид скоростей вытянут относительно оптической оси) и одноосный кристалл называется положительным (рис. 279, а). Если ve>vo (ne<no), то эллипсоид описан вокруг сферы (эллипсоид скоростей растянут в направлении, перпендикулярном оп­тической оси) и одноосный кристалл называется отрицательным (рис. 279, б). Рассмот­ренный выше исландский шпат относится к отрицательным кристаллам.

В качестве примера построения обыкновенного и необыкновенного лучей рассмот­рим преломление плоской волны на границе анизотропной среды, например положи­тельной (рис. 280). Пусть свет падает нормально к преломляющей грани кристалла, а оптическая ось OO' составляет с нею некоторый угол. С центрами в точках А и В по­строим сферические волновые поверхности, соответствующие обыкновенному лучу, и эллипсоидальные — необыкновенному лучу. В точке, лежащей на OO', эти поверх­ности соприкасаются. Согласно принципу Гюйгенса, поверхность, касательная к сфе­рам, будет фронтом (а—а) обыкновенной волны, поверхность, касательная к эллипсо­идам, — фронтом (b—b) необыкновенной волны. Проведя к точкам касания прямые, получим направления распространения обыкновенного (о) и необыкновенного (е) лу­чей. Таким образом, в данном случае обыкновенный луч пойдет вдоль первоначаль­ного направления, необыкновенный же отклонится от первоначального направления.

§ 193. Поляризационные призмы и поляроиды

В основе работы поляризационных приспособлений, служащих для получения поляри­зованного света, лежит явление двойного лучепреломления. Наиболее часто для этого применяются призмы и поляроиды. Призмы делятся на два класса:


1) призмы, дающие только плоскополяризованный луч (поляризационные призмы);

2) призмы, дающие два поляризованных во взаимно перпендикулярных плоскостях луча (двоякопреломляющие призмы).

Поляризационные призмы построены по принципу полного отражения (см. § 165) одного из лучей (например, обыкновенного) от границы раздела, в то время как другой луч с другим показателем преломления проходит через эту границу. Типичным пред­ставителем поляризационных призм является призма Николя*, называемая часто николем. Призма Николя (рис. 281) представляет собой двойную призму из исландс­кого шпата, склеенную вдоль линии АВ канадским бальзамом с п=1,55. Оптическая ось ОО' призмы составляет с входной гранью угол 48°. На передней грани призмы естественный луч, параллельный ребру СВ, раздваивается на два луча: обыкновенный (nо=1,66) и необыкновенный (ne=1,51). При соответствующем подборе угла падения, равного или большего предельного, обыкновенный луч испытывает полное отражение (канадский бальзам для него является средой оптически менее плотной), а затем поглощается зачерненной боковой поверхностью СВ. Необыкновенный луч выходит из кристалла параллельно падающему лучу, незначительно смещенному относительно него (ввиду преломления на наклонных гранях АС и BD).

* У. Николь (1768—1851) — шотландский ученый.


Двоякопреломляющие призмы используют различие в показателях преломления обыкновенного и необыкновенного лучей, чтобы развести их возможно дальше друг от друга. Примером двоякопреломляющих призм могут служить призмы из исландского шпата и стекла, призмы, составленные из двух призм из исландского пшата со взаимно перпендикулярными оптическими осями. Для первых призм (рис. 282) обыкновенный луч преломляется в шпате и стекле два раза и, следовательно, сильно отклоняется, необыкновенный же луч при соответствующем подборе показателя преломления стекла n (nne) проходит призму почти без отклонения. Для вторых призм различие в ориентировке оптических осей влияет на угол расхождения между обыкновенным и необыкновенным лучами.

Двоякопреломляющие кристаллы обладают свойством дихроизма, т. е. различного поглощения света в зависимости от ориентации электрического вектора световой волны, и называются дихроичными кристаллами. Примером сильно дихроичного кри­сталла является турмалин, в котором из-за сильного селективного поглощения обык­новенного луча уже при толщине пластинки 1 мм из нее выходит только необыкновен­ный луч. Такое различие в поглощении, зависящее, кроме того, от длины волны, приводит к тому, что при освещении дихроичного кристалла белым светом кристалл по разным направлениям оказывается различно окрашенным.

Дихроичиые кристаллы приобрели еще более важное значение в связи с изобретени­ем поляроидов. Примером поляроида может служить тонкая пленка из целлулоида, в которую вкраплены кристаллики герапатита (сернокислого иод-хинина). Герапатит — двоякопреломляющее вещество с очень сильно выраженным дихроизмом в об­ласти видимого света. Установлено, что такая пленка уже при толщине 0,1 мм полностью поглощает обыкновенные лучи видимой области спектра, являясь в таком тонком слое совершенным поляризатором. Преимущество поляроидов перед призмами — возможность изготовлять их с площадями поверхностей до нескольких квадрат­ных метров. Однако степень поляризации в них сильнее зависит от , чем в призмах. Кроме того, их меньшая по сравнению с призмами прозрачность (приблизительно 30%) в сочетании с небольшой термостойкостью не позволяет использовать поляро­иды в мощных световых потоках. Поляроиды применяются, например, для защиты от ослепляющего действия солнечных лучей и фар встречного автотранспорта.