Файл: Учебник Трофимова Курс физики.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.07.2020

Просмотров: 34225

Скачиваний: 520

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Предисловие

Введение

Предмет физики и ее связь с другими науками

Единицы физических величин

1 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Глава 1 Элементы кинематики

§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения

§ 2. Скорость

§ 3. Ускорение и его составляющие

§ 4. Угловая скорость и угловое ускорение

Глава 2 Динамика материальной точки и поступательного движения твердого тела

§ 5. Первый закон Ньютона. Масса. Сила

§ 6. Второй закон Ньютона

§ 7. Третий закон Ньютона

§ 8. Силы трения

§ 9. Закон сохранения импульса. Центр масс

§ 10. Уравнение движения тела переменной массы

Глава 3 Работа и энергия

§11. Энергия, работа, мощность

§ 12. Кинетическая и потенциальная энергии

§ 13. Закон сохранения энергии

§ 14. Графическом представление энергии

§ 15. Удар абсолютно упругих и неупругих тел

Глава 4 Механика твердого тела

§ 16. Момент инерции

§ 17. Кинетическая энергия вращения

§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела

§ 19. Момент импульса и закон то сохранения

§ 20. Свободные оси. Гироскоп

§ 21. Деформации твердого тела

Глава 5 Тяготение. Элементы теории поля

§ 22. Законы Кеплера. Закон всемирного тяготения

§ 23. Сила тяжести и вес. Невесомость

§ 24. Поле тяготения и то напряженность

§ 25. Работа в поле тяготения. Потенциал поля тяготения

§ 26. Космические скорости

§ 27. Неинерциальные системы отсчета. Силы инерции

Глава 6 Элементы механики жидкостей

§ 28. Давление в жидкости и газе

§ 29. Уравнение неразрывности

§ 30. Уравнение Бернулли и следствия из него

§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей

§ 32. Методы определения вязкости

§ 33. Движение тел в жидкостях и газах

Глава 7 Элементы специальной (частной) теории относительности

§ 34. Преобразования Галилея. Механический принцип относительности

§ 35. Постулаты специальной (частной) теории относительности

§ 36. Преобразования Лоренца

§ 37. Следствия из преобразований Лоренца

§ 38. Интервал между событиями

§ 39. Основной закон релятивистской динамики материальной точки

§ 40. Закон взаимосвязи массы и энергии

2 ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ

Глава 8 Молекулярно-кинетическая теория идеальных газов

§ 41. Статистический и термодинамический методы. Опытные законы идеального газа

§ 42. Уравнение Клапейрона — Менделеева

§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов

§ 44. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения

§ 45. Барометрическая формула. Распределение Больцмана

§ 46. Среднее число столкновений и средняя длина свободного пробега молекул

§ 47. Опытное обоснование молекулярно-кинетической теории

§ 48. Явления переноса в термодинамически неравновесных системах

§ 48. Вакуум и методы его получения. Свойства ультраразреженных газов

Глава 9 Основы термодинамики

§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул

§ 51. Первое начало термодинамики

§ 52. Работа газа при изменении его объема

§ 53. Теплоемкость

§ 54. Применение первого начала термодинамики к изопроцессам

§ 55. Адиабатический процесс. Политропный процесс

§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы

§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

§ 58. Второе начало термодинамики

§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа

Задачи

Глава 10 Реальные газы, жидкости и твердые тела

§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия

§ 61. Уравнение Ван-дер-Ваальса

§ 62. Изотермы Ван-дер-Ваальса и их анализ

§ 63. Внутренняя энергия реального газа

§ 64. Эффект Джоуля — Томсона

§ 65. Сжижение газов

§ 66. Свойства жидкостей. Поверхностное натяжение

§ 67. Смачивание

§ 68. Давление под искривленной поверхностью жидкости

§ 69. Капиллярные явления

§ 70. Твердые тела. Моно- и поликристаллы

§ 71. Типы кристаллических твердых тел

§ 72. Дефекты в кристаллах

§ 73. Теплоемкость твердых тел

§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела

§ 75. Фазовые переходы I и П рода

§ 76. Диаграмма состояния. Тройная точка

Задачи

3 ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ

Глава 11 Электростатика

§ 77. Закон сохранения электрического заряда

§ 78. Закон Кулона

§ 79. Электростатическое поле. Напряженность электростатического поля

§ 80. Принцип суперпозиции электростатических полей. Поле диполя

§ 81. Теорема Гаусса для электростатического поля в вакууме

§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме

§ 83. Циркуляция вектора напряженности электростатического поля

§ 84. Потенциал электростатического поля

§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности

§ 86. Вычисление разности потенциалов по напряженности поля

§ 87. Типы диэлектриков. Поляризация диэлектриков

§ 88. Поляризованность. Напряженность поля в диэлектрике

§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике

§ 90. Условия на границе раздела двух диэлектрических сред

§ 91. Сегнетоэлектрики

§ 92. Проводники в электростатическом поле

§ 93. Электрическая емкость уединенного проводника

§ 94. Конденсаторы

§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля

Задачи

Глава 12 Постоянный электрический ток

§ 96. Электрический ток, сила и плотность тока

§ 97. Сторонние силы. Электродвижущая сила и напряжение

§ 98. Закон Ома. Сопротивление проводников

§ 99. Работа и мощность тока. Закон Джоуля — Ленца

§ 100. Закон Ома для неоднородного участка цепи

§ 101. Правила Кирхгофа для разветвленных цепей

Задачи

Глава 13 Электрические токи в металлах, вакууме и газах

§ 102. Элементарная классическая теория электропроводности металлов

§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов

§ 104. Работа выхода электронов из металла

§ 105. Эмиссионные явления и их применение

§ 106. Ионизация газов. Несамостоятельный газовый разряд

§ 107. Самостоятельный газовый разряд и его типы

§ 108. Плазма и ее свойства

Задачи

Глава 14 Магнитное поле

§ 109. Магнитное поле и его характеристики

§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля

§ 111. Закон Ампера. Взаимодействие параллельных токов

§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля

§ 113. Магнитное поле движущегося заряда

§ 114. Действие магнитного поля на движущийся заряд

§ 115. Движение заряженных частиц в магнитном поле

§ 116. Ускорители заряженных частиц

§ 117. Эффект Холла

§ 118. Циркуляция вектора В магнитного поля в вакууме

§ 119. Магнитные поля соленоида и тороида

§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля В

§ 121. Работа по перемещению проводника и контура с током в магнитном поле

Задачи

Глава 15 Электромагнитная индукция

§122. Явление электромагнитной индукции (опыты Фарадея)

§ 123. Закон Фарадея и его вывод из закона сохранения энергии

§ 124. Вращение рамки в магнитном поле

§ 125. Вихревые токи (токи Фуко)

§ 126. Индуктивность контура. Самоиндукция

§ 127. Токи при размыкании и замыкании цепи

§ 128. Взаимная индукция

§ 129. Трансформаторы

§ 130. Энергия магнитного поля

Глава 16 Магнитные свойства вещества

§ 131. Магнитные моменты электронов и атомов

§ 132. Диа- и парамагнетизм

§ 133. Намагниченность. Магнитное поле в веществе

§ 134. Условия на границе раздела двух магнетиков

§ 135. Ферромагнетики и их свойства

§ 136. Природа ферромагнетизма

Глава 17 Основы теории Максвелла для электромагнитного поля

§ 137. Вихревое электрическое поле

§ 138. Ток смещения

§ 139. Уравнения Максвелла для электромагнитного поля

4 КОЛЕБАНИЯ И ВОЛНЫ

Глава 18 Механические и электромагнитные колебания

§ 140. Гармонические колебания и их характеристики

§ 141. Механические гармонические колебания

§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники

§ 143. Свободные гармонические колебания в колебательном контуре

§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

§ 145. Сложение взаимно перпендикулярных колебаний

§ 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания

§ 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение

§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс

§ 148. Переменный ток

§ 150. Резонанс напряжений

§ 151. Резонанс токов

§ 152. Мощность, выделяемая в цепи переменного тока

Глава 19 Упругие волны

§ 153. Волновые процессы. Продольные и поперечные волны

§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение

§ 155. Принцип суперпозиции. Групповая скорость

§ 156. Интерференция волн

§ 157. Стоячие волны

§ 158. Звуковые волны

S 159. Эффект Доплере в акустике

§ 160. Ультразвук и его применение

Глава 20 Электромагнитные волны

§ 161. Экспериментальное получение электромагнитных волн

§ 162. Дифференциальное уравнение электромагнитной волны

§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля

§ 164. Излучение диполя. Применение электромагнитных волн

5 ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ

Глава 21 Элементы геометрической и электронной оптики

§ 165. Основные законы оптики. Полное отражение

§ 166. Тонкие линзы. Изображение предметов с помощью линз

§ 187. Аберрации (погрешности) оптических систем

§ 168. Основные фотометрические величины и их единицы

§ 189. Элементы электронной оптики

Глава 22 Интерференция света

§ 170. Развитие представлений о природе света

§ 171. Когерентность и монохроматичность световых волн

§ 172. Интерференция света

§ 173. Методы наблюдения интерференции света

§ 174. Интерференция света в тонких пленках

§ 175. Применение интерференции света

Глава 23 Дифракция света

§ 176. Принцип Гюйгенса — Френеля

§ 177. Метод зон Френеля. Прямолинейное распространение света

§ 178. Дифракция Френеля на круглом отверстии и диске

§ 178. Дифракция Фраунгофера на одной щели

§ 180. Дифракция Фраунгофера на дифракционной решетке

§ 181. Пространственная решетка. Рассеяние света

§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов

§ 183. Разрешающая способность оптических приборов

§ 184. Понятие о голографии

Глава 24 Взаимодействие электромагнитных волн с веществом

§ 185. Дисперсия света

§ 186. Электронная теория дисперсии светя

§ 187. Поглощение (абсорбция) света

§ 188. Эффект Доплера

§ 189. Излучение Вавилова — Черенкова

Глава 25 Поляризация света

§ 190. Естественный и поляризованный свет

§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков

§ 192. Двойное лучепреломление

§ 193. Поляризационные призмы и поляроиды

§ 194. Анализ поляризованного света

§ 195. Искусственная оптическая анизотропия

§ 196. Вращение плоскости поляризации

Глава 26 Квантовая природа излучения

§ 197. Тепловое излучение и его характеристики

§ 188. Закон Кирхгофа

§ 199. Законы Стефана — Больцмана и смещения Вина

§ 200. Формулы Рэлея — Джинса и Планка

§ 201. Оптическая пирометрия. Тепловые источники света

§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта

§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света

§ 204. Применение фотоэффекта

§ 205. Масса и импульс фотона. Давление света

§ 206. Эффект Комптона и его элементарная теория

§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения

6 ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ

Глава 27 Теория атома водорода по Бору

§ 208. Модели атома Томсона и Резерфорда

§ 209. Линейчатый спектр атома водорода

§ 210. Постулаты Бора

§ 211. Опыты Франка и Герца

§ 212. Спектр атома водорода по Бору

Глава 28 Элементы квантовой механики

§ 213. Корпускулярно-волновой дуализм свойств вещества

§ 214. Некоторые свойства волн да Бройля

§ 215. Соотношение неопределенностей

§ 216. Волновая функция и ее статистический смысл

§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

§ 218. Принцип причинности в квинтовой механике

§ 219. Движение свободной частицы

§ 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»

§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект

§ 222. Линейный гармонический осциллятор в квантовой механике

Глава 29 Элементы современной физики атомов и молекул

§ 223. Атом водорода в квантовой механике

§ 224. 1s-Состояние электрона в атоме водорода

§ 225. Спин электрона. Спиновое квантовое число

§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны

§ 227. Принцип Паули. Распределение электронов в атоме по состояниям

§ 228. Периодическая система элементов Менделеева

§ 229. Рентгеновские спектры

§ 230. Молекулы: химические связи, понятие об энергетических уровнях

§ 231. Молекулярные спектры. Комбинационное рассеяние света

§ 232. Поглощение. Спонтанное и вынужденное излучения

§ 233. Оптические квантовые генераторы (лазеры)

Глава 30 Элементы квантовой статистики

§ 234. Квантовая статистика. Фазовое пространство. Функция распределения

§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака

§ 236. Вырожденный электронный газ в металлах

§ 237. Понятие о квантовой теории теплоемкости. Фононы

§ 238. Выводы квантовой теории электропроводности металлов

§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона

Глава 31 Элементы физики твердого тела

§ 240. Понятие о зонной теории твердых тел

§ 241. Металлы, диэлектрики и полупроводники по зонной теории

§ 242. Собственная проводимость полупроводников

§ 243. Примесная проводимость полупроводников

§ 244. Фотопроводимость полупроводников

§ 245. Люминесценция твердых тел

§ 246. Контакт двух металлов по зонной теории

§ 247. Термоэлектрические явления и их применение

§ 248. Выпрямление на контакте металл — полупроводник

§ 249. Контакт электронного и дырочного полупроводников (p-n-переход)

§ 250. Полупроводниковые диоды и триоды (транзисторы)

7 ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Глава 32 Элементы физики атомного ядра

§ 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа

§ 252. Дефект массы и энергия связи ядра

§ 253. Спин ядра и его магнитный момент

§ 254. Ядерные силы. Модели ядра

§ 255. Радиоактивное излучение и его виды

§ 256. Закон радиоактивного распада. Правила смещения

§ 257. Закономерности -распада

§ 258. –-Распад. Нейтрино

§ 259. Гамма-излучение и его свойства

§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра*)

§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц

§ 262. Ядерные реакции и их основные типы

§ 263. Позитрон. +-Распад. Электронный захват

§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов

§ 265. Реакция деления ядра

§ 266. Цепная реакция деления

§ 267. Понятие о ядерной энергетике

§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций

Глава 33 Элементы физики элементарных частиц

§ 269. Космическое излучение

§ 270. Мюоны и их свойства

§ 271. Мезоны и их свойства

§ 272. Типы взаимодействий элементарных частиц

§ 273. Частицы и античастицы

§ 274. Гипероны. Странность и четность элементарных частиц

§ 275. Классификация элементарных частиц. Кварки

ЗАКЛЮЧЕНИЕ

Остановимся на некоторых свойствах ультраразреженных газов. Так как в состоя­нии ультраразрежения молекулы практически друг с другом не сталкиваются, то газ в этом состоянии не обладает внутренним трением. Отсутствие соударений между молекулами разреженного газа отражается также на механизме теплопроводности. Если при обычных давлениях перенос энергии молекулами производится «эстафетой», то при ультраразрежении каждая молекула сама должна перенести энергию от одной стенки сосуда к другой. Явление уменьшения теплопроводности вакуума при пониже­нии давления используется на практике для создания тепловой изоляции. Например, для уменьшения теплообмена между телом и окружающей средой тело помещают в сосуд Дьюара*, имеющий двойные стенки, между которыми находится разрежен­ный воздух, теплопроводность которого очень мала.

* Д. Дьюар (1842—1923) — английский химик и физик.


Рассмотрим два сосуда 1 и 2, поддерживаемых соответственно при температурах T1 и Т2 (рис. 75) и соединенных между собой трубкой. Если длина свободного пробега молекул гораздо меньше диаметра соединительной трубки (<l> << d), то стационарное состояние газа характеризуется равенством давлений в обоих сосудах (p1 = р2). Стаци­онарное же состояние ультраразреженного газа (<l> >> d), находящегося в двух сосудах, соединенных трубкой, возможно лишь в том случае, когда встречные потоки частиц, перемещающихся из одного сосуда в другой, одинаковы, т. е.

где п1 и п2 концентрации молекул в обоих сосудах, <v1> и <v2> — средние скорости молекул. Учитывая, что n = p/(kT) и из условия (49.1) получаем

(49.2)

т. е. в условиях высокого вакуума выравнивания давлении не происходит. Если в от­качанный стеклянный баллон (рве. 76) на пружину 1 насадить слюдяной листочек 2, одна сторона которого зачернена, и освещать его, то возникнет разность температур между светлой и зачерненной поверхностями листочка. Из выражения (49.2) следует, что в данном случае разным будет и давление, т. е. молекулы от зачерненной поверх­ности будут отталкиваться с большей силой, чем от светлой, в результате чего листочек отклонится. Это явление называется радиометрическим эффектом. На радиометричес­ком эффекте основано действие радиометрического манометра.

Задачи

8.1. Начертить и объяснить графики изотермического и изобарного процессов в координатах p и V, p и T, T и V.

8.2. В сосуде при температуре t = 20°C и давлении р = 0,2 МПа содержится смесь газов — кислорода массой m1 =16 г и азота массой m2 = 21 г. Определить плотность смеси. [2.5 кг/м3]

8.3. Определить наиболее вероятную скорость молекул газа, плотность которого при давлении 40 кПа составляет 0,38 кг/м3. [478 м/с]

8.4. Используя закон о распределении молекул идеального газа по скоростям, найти закон, выражающий распределение молекул по относительным скоростям и (u = v/vB). [ ]


8.5. Воспользовавшись законом распределения идеального газа по относительным скоростям (см. задачу 8.4), определить, какая доля молекул кислорода, находящегося при темпера­туре t = 0C, имеет скорости от 100 до 110 м/с. [0,4]

8.6. На какой высоте плотность воздуха в два раза меньше, чем его плотность на уровне моря? Считать, что температура воздуха везде одинакова и равна 273 К. [5,5 км]

8.7. Определить среднюю продолжительность свободного пробега молекул водорода при темпера­туре 300 К и давлении 5 кПа. Эффективный диаметр молекул принять равным 0,28 нм. [170 нс]

8.8. Коэффициенты диффузии и внутреннего трения при некоторых условиях равны соответст­венно 1,4210–4 м2/с и 8,5 мкПас. Определить концентрацию молекул воздуха при этих условиях. [1,251024 м–3]

Глава 9 Основы термодинамики

§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул

Важной характеристикой термодинамической системы является ее внутренняя энергия U — энергия хаотического (теплового) движения микрочастиц системы (моле­кул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Из этого определения следует, что к внутренней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.

Внутренняя энергия — однозначная функция термодинамического состояния систе­мы, т. е. в каждом состоянии система обладает вполне определенной внутренней энергией (она не зависит от того, как система пришла в данное состояние). Это означает, что при переходе системы из одного состояния в другое изменение внутрен­ней энергии определяется только разностью значений внутренней энергии этих состоя­ний и не зависит от пути перехода.

В § 1 было введено понятие числа степеней свободы: это число независимых переменных (координат), полностью определяющих положение системы в пространст­ве. В ряде задач молекулу одноатомного газа (рис. 77, а) рассматривают как матери­альную точку, которой приписывают три степени свободы поступательного движения. При этом энергию вращательного движения можно не учитывать (r 0, J = mr2 0, Tвр=J2/20).

В классической механике молекула двухатомного газа в первом приближении рассматривается как совокупность двух материальных точек, жестко связанных неде­формируемой связью (рис. 77, б). Эта система кроме трех степеней свободы поступа­тельного движения имеет еще две степени свободы вращательного движения. Вращение вокруг третьей оси (оси, проходящей через оба атома) лишено смысла. Таким образом, двухатомный газ обладает пятью степенями свободы (i = 5). Трехатомная (рис. 77, я) и многоатомная нелинейные молекулы имеют шесть степеней свободы: три поступательных и три вращательных. Естественно, что жесткой связи между атомами не существует. Поэтому для реальных молекул необходимо учитывать также степени свободы колебательного движения.


Независимо от общего числа степеней свободы молекул три степени свободы всегда поступательные. Ни одна из поступательных степеней свободы не имеет преиму­щества перед другими, поэтому на каждую из них приходится в среднем одинаковая энергия, равная 1/3 значения <0> в (43.8):

В классической статистической физике выводится закон Больцмана о равномерном распределении энергии по степеням свободы молекул: для статистической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная kT/2, а на каждую колебательную степень свободы — в среднем энергия, равная kT. Колебательная степень «обладает» вдвое большей энергией потому, что на нее прихо­дится не только кинетическая энергия (как в случае поступательного и вращательного движений), но и потенциальная, причем средние значения кинетической и потенциаль­ной энергий одинаковы. Таким образом, средняя энергия молекулы

где i сумма числа поступательных, числа вращательных в удвоенного числа колеба­тельных степеней свободы молекулы:

В классической теории рассматривают молекулы с жесткой связью между атомами; для них i совпадает с числом степеней свободы молекулы.

Так как в идеальном газе взаимная потенциальная энергия молекул равна нулю (молекулы между собой не взаимодействуют), то внутренняя энергия, отнесенная к одному молю газа, будет равна сумме кинетических энергий Na молекул:

(50.1)

Внутренняя энергия для произвольной массы т газа.

где М — молярная масса, — количество вещества.

§ 51. Первое начало термодинамики

Рассмотрим термодинамическую систему, для которой механическая энергия не изме­няется, а изменяется лишь ее внутренняя энергия. Внутренняя энергия системы может изменяться в результате различных процессов, например совершения над системой работы или сообщения ей теплоты. Так, вдвигая поршень в цилиндр, в котором находится газ, мы сжимаем этот газ, в результате чего его температура повышается, т. е. тем самым изменяется (увеличивается) внутренняя энергия газа. С другой сторо­ны, температуру газа и его внутреннюю энергию можно увеличить за счет сообщения ему некоторого количества теплоты — энергии, переданной системе внешними телами путем теплообмена (процесс обмена внутренними энергиями при контакте тел с раз­ными температурами).

Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики, установленное в результате обобщения многовековых опытных данных.


Допустим, что некоторая система (газ, заключенный в цилиндр под поршнем), обладая внутренней энергией U1, получила некоторое количество теплоты Q и, перейдя в новое состояние, характеризующееся внутренней энергией U2, совершила работу А над внешней средой, т. е. против внешних сил. Количество теплоты считается положительным, когда оно подводится к системе, а работа — положительной, когда система совершает ее против внешних сил. Опыт показывает, что в соответствии с законом сохранения энергии при любом способе перехода системы из первого состояния во второе изменение внутренней энергии U=U2U1 будет одинаковым и равным разности между количеством теплоты Q, полученным системой, и работой А, совершенной системой против внешних сил:

или

(51.1)

Уравнение (51.1) выражает первое начало термодинамики: теплота, сообщаемая систе­ме, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил. Выражение (51.1) в дифференциальной форме будет иметь вид

или в более корректной форме

(51.2)

где dU бесконечно малое изменение внутренней энергии системы, A элементар­ная работа, Q бесконечно малое количество теплоты. В этом выражении dU является полным дифференциалом, а A и Q таковыми не являются. В дальнейшем будем использовать запись первого начала термодинамики в форме (51.2).

Из формулы (51.1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т. е. в джоулях (Дж).

Если система периодически возвращается в первоначальное состояние, то измене­ние ее внутренней энергии U=0. Тогда, согласно первому началу термодинамики,

т. е. вечный двигатель первого рода — периодически действующий двигатель, который совершал бы бóльшую работу, чем сообщенная ему извне энергия, — невозможен (одна из формулировок первого начала термодинамики).

§ 52. Работа газа при изменении его объема

Для рассмотрения конкретных процессов найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, находя­щийся под поршнем в цилиндрическом сосуде (рис. 78). Если газ, расширяясь, пере­двигает поршень на бесконечно малое расстояние dl, то производит над ним работу


где S площадь поршня, Sdl=dV изменение объема системы. Таким образом,

(52.1)


Полную работу А, совершаемую газом при изменении его объема от V1 до V2, найдем интегрированием формулы (52.1):

(52.2)

Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение (52.2) справедливо при любых изменениях объема твердых, жидких и газообразных тел.

Произведенную при том или ином процессе работу можно изобразить графически с помощью кривой в координатах р, V. Пусть изменение давления газа при его расширении изображается кривой на рис. 79. При увеличении объема на dV соверша­емая газом работа равна pdV, т. е. определяется площадью полоски с основанием dV, заштрихованной на рисунке. Поэтому полная работа, совершаемая газом при расшире­нии от объема V1 до объема V2, определяется площадью, ограниченной осью абсцисс, кривой p=f(V) и прямыми V1 и V2.


Графически можно изображать только равновесные процессы — процессы, состо­ящие из последовательности равновесных состояний. Они протекают так, что измене­ние термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы неравновесны (они протекают с конечной скоростью), но в ряде случаев неравновесностью реальных процессов можно пренебречь (чем медлен­нее процесс протекает, тем он ближе к равновесному). В дальнейшем рассматриваемые процессы будем считать равновесными.

§ 53. Теплоемкость

Удельная теплоемкость вещества — величина, равная количеству теплоты, необходи­мому для нагревания 1 кг вещества на 1 К:

Единила удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг К)).

Молярная теплоемкость—величина, равная количеству теплоты, необходимому для нагревания 1 моль вещества на 1 К:

(53.1)

где =m/Мколичество вещества.

Единица молярной теплоемкости — джоуль на моль-кельвин (Дж/(моль К)).

Удельная теплоемкость с связана с молярной Сm, соотношением

(53.2)

где М — молярная масса вещества.

Различают теплоемкости при постоянном объеме и постоянном давлении, если в процессе нагревания вещества его объем или давление поддерживается постоянным.

Запишем выражение первого начала термодинамики (51.2) для 1 моль газа с учетом формул (52.1) и (53.1):

(53.3)

Если газ нагревается при постоянном объеме, то работа внешних сил равна нулю (см. (52.1)) и сообщаемая газу извне теплота вдет только на увеличение его внутренней энергии:

(53.4)

т. е. молярная теплоемкость газа при постоянном объеме СV равна изменению внут­ренней энергии 1 моль газа при повышении его температуры на 1 К. Согласно формуле (50.1), тогда

(53.5)

Если газ нагревается при постоянном давлении, то выражение (53.3) можно запи­сать в виде

Учитывая, что не зависит от вида процесса (внутренняя энергия идеального газа не зависит ни от p, ни от V, а определяется лишь температурой Т) и всегда равна СV (см. (53.4)), и дифференцируя уравнение Клапейрона — Менделеева pVm=RT (42.4) по T (p=const), получаем

(53.6)

Выражение (53.6) называется уравнением Майера; оно показывает, что Ср всегда больше СV на величину молярной газовой постоянной. Это объясняется тем, что при нагрева­нии газа при постоянном давлении требуется еще дополнительное количество теплоты на совершение работы расширения газа, так как постоянство давления обеспечивается увеличением объема газа. Использовав (53.5), выражение (53.6) можно записать в виде

(53.7)

При рассмотрении термодинамических процессов важно знать характерное для каждого газа отношение Сp к СV :

(53.8)

Из формул (53.5) и (53.7) следует, что молярные теплоемкости определяются лишь числом степеней свободы и не зависят от температуры. Это утверждение молекулярно-кинетической теории справедливо в довольно широком интервале температур лишь для одноатомных газов. Уже у двухатомных газов число степеней свободы, проявля­ющееся в теплоемкости, зависит от температуры. Молекула двухатомного газа облада­ет тремя поступательными, двумя вращательными и одной колебательной степенями свободы.