ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.07.2020
Просмотров: 34496
Скачиваний: 521
СОДЕРЖАНИЕ
Предмет физики и ее связь с другими науками
§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
§ 3. Ускорение и его составляющие
§ 4. Угловая скорость и угловое ускорение
Глава 2 Динамика материальной точки и поступательного движения твердого тела
§ 5. Первый закон Ньютона. Масса. Сила
§ 9. Закон сохранения импульса. Центр масс
§ 10. Уравнение движения тела переменной массы
§11. Энергия, работа, мощность
§ 12. Кинетическая и потенциальная энергии
§ 13. Закон сохранения энергии
§ 14. Графическом представление энергии
§ 15. Удар абсолютно упругих и неупругих тел
Глава 4 Механика твердого тела
§ 17. Кинетическая энергия вращения
§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела
§ 19. Момент импульса и закон то сохранения
§ 21. Деформации твердого тела
Глава 5 Тяготение. Элементы теории поля
§ 22. Законы Кеплера. Закон всемирного тяготения
§ 23. Сила тяжести и вес. Невесомость
§ 24. Поле тяготения и то напряженность
§ 25. Работа в поле тяготения. Потенциал поля тяготения
§ 27. Неинерциальные системы отсчета. Силы инерции
Глава 6 Элементы механики жидкостей
§ 28. Давление в жидкости и газе
§ 30. Уравнение Бернулли и следствия из него
§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
§ 32. Методы определения вязкости
§ 33. Движение тел в жидкостях и газах
Глава 7 Элементы специальной (частной) теории относительности
§ 34. Преобразования Галилея. Механический принцип относительности
§ 35. Постулаты специальной (частной) теории относительности
§ 37. Следствия из преобразований Лоренца
§ 38. Интервал между событиями
§ 39. Основной закон релятивистской динамики материальной точки
§ 40. Закон взаимосвязи массы и энергии
2 ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ
Глава 8 Молекулярно-кинетическая теория идеальных газов
§ 41. Статистический и термодинамический методы. Опытные законы идеального газа
§ 42. Уравнение Клапейрона — Менделеева
§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов
§ 45. Барометрическая формула. Распределение Больцмана
§ 46. Среднее число столкновений и средняя длина свободного пробега молекул
§ 47. Опытное обоснование молекулярно-кинетической теории
§ 48. Явления переноса в термодинамически неравновесных системах
§ 48. Вакуум и методы его получения. Свойства ультраразреженных газов
§ 51. Первое начало термодинамики
§ 52. Работа газа при изменении его объема
§ 54. Применение первого начала термодинамики к изопроцессам
§ 55. Адиабатический процесс. Политропный процесс
§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы
§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
§ 58. Второе начало термодинамики
§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа
Глава 10 Реальные газы, жидкости и твердые тела
§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия
§ 61. Уравнение Ван-дер-Ваальса
§ 62. Изотермы Ван-дер-Ваальса и их анализ
§ 63. Внутренняя энергия реального газа
§ 66. Свойства жидкостей. Поверхностное натяжение
§ 68. Давление под искривленной поверхностью жидкости
§ 70. Твердые тела. Моно- и поликристаллы
§ 71. Типы кристаллических твердых тел
§ 73. Теплоемкость твердых тел
§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
§ 75. Фазовые переходы I и П рода
§ 76. Диаграмма состояния. Тройная точка
3 ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ
§ 77. Закон сохранения электрического заряда
§ 79. Электростатическое поле. Напряженность электростатического поля
§ 80. Принцип суперпозиции электростатических полей. Поле диполя
§ 81. Теорема Гаусса для электростатического поля в вакууме
§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
§ 83. Циркуляция вектора напряженности электростатического поля
§ 84. Потенциал электростатического поля
§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
§ 86. Вычисление разности потенциалов по напряженности поля
§ 87. Типы диэлектриков. Поляризация диэлектриков
§ 88. Поляризованность. Напряженность поля в диэлектрике
§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
§ 90. Условия на границе раздела двух диэлектрических сред
§ 92. Проводники в электростатическом поле
§ 93. Электрическая емкость уединенного проводника
Глава 12 Постоянный электрический ток
§ 96. Электрический ток, сила и плотность тока
§ 97. Сторонние силы. Электродвижущая сила и напряжение
§ 98. Закон Ома. Сопротивление проводников
§ 99. Работа и мощность тока. Закон Джоуля — Ленца
§ 100. Закон Ома для неоднородного участка цепи
§ 101. Правила Кирхгофа для разветвленных цепей
Глава 13 Электрические токи в металлах, вакууме и газах
§ 102. Элементарная классическая теория электропроводности металлов
§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
§ 104. Работа выхода электронов из металла
§ 105. Эмиссионные явления и их применение
§ 106. Ионизация газов. Несамостоятельный газовый разряд
§ 107. Самостоятельный газовый разряд и его типы
§ 109. Магнитное поле и его характеристики
§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
§ 111. Закон Ампера. Взаимодействие параллельных токов
§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
§ 113. Магнитное поле движущегося заряда
§ 114. Действие магнитного поля на движущийся заряд
§ 115. Движение заряженных частиц в магнитном поле
§ 116. Ускорители заряженных частиц
§ 118. Циркуляция вектора В магнитного поля в вакууме
§ 119. Магнитные поля соленоида и тороида
§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля В
§ 121. Работа по перемещению проводника и контура с током в магнитном поле
Глава 15 Электромагнитная индукция
§122. Явление электромагнитной индукции (опыты Фарадея)
§ 123. Закон Фарадея и его вывод из закона сохранения энергии
§ 124. Вращение рамки в магнитном поле
§ 125. Вихревые токи (токи Фуко)
§ 126. Индуктивность контура. Самоиндукция
§ 127. Токи при размыкании и замыкании цепи
§ 130. Энергия магнитного поля
Глава 16 Магнитные свойства вещества
§ 131. Магнитные моменты электронов и атомов
§ 133. Намагниченность. Магнитное поле в веществе
§ 134. Условия на границе раздела двух магнетиков
§ 135. Ферромагнетики и их свойства
§ 136. Природа ферромагнетизма
Глава 17 Основы теории Максвелла для электромагнитного поля
§ 137. Вихревое электрическое поле
§ 139. Уравнения Максвелла для электромагнитного поля
Глава 18 Механические и электромагнитные колебания
§ 140. Гармонические колебания и их характеристики
§ 141. Механические гармонические колебания
§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники
§ 143. Свободные гармонические колебания в колебательном контуре
§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
§ 145. Сложение взаимно перпендикулярных колебаний
§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
§ 152. Мощность, выделяемая в цепи переменного тока
§ 153. Волновые процессы. Продольные и поперечные волны
§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
§ 155. Принцип суперпозиции. Групповая скорость
S 159. Эффект Доплере в акустике
§ 160. Ультразвук и его применение
Глава 20 Электромагнитные волны
§ 161. Экспериментальное получение электромагнитных волн
§ 162. Дифференциальное уравнение электромагнитной волны
§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля
§ 164. Излучение диполя. Применение электромагнитных волн
5 ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ
Глава 21 Элементы геометрической и электронной оптики
§ 165. Основные законы оптики. Полное отражение
§ 166. Тонкие линзы. Изображение предметов с помощью линз
§ 187. Аберрации (погрешности) оптических систем
§ 168. Основные фотометрические величины и их единицы
§ 189. Элементы электронной оптики
§ 170. Развитие представлений о природе света
§ 171. Когерентность и монохроматичность световых волн
§ 173. Методы наблюдения интерференции света
§ 174. Интерференция света в тонких пленках
§ 175. Применение интерференции света
§ 176. Принцип Гюйгенса — Френеля
§ 177. Метод зон Френеля. Прямолинейное распространение света
§ 178. Дифракция Френеля на круглом отверстии и диске
§ 178. Дифракция Фраунгофера на одной щели
§ 180. Дифракция Фраунгофера на дифракционной решетке
§ 181. Пространственная решетка. Рассеяние света
§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
§ 183. Разрешающая способность оптических приборов
Глава 24 Взаимодействие электромагнитных волн с веществом
§ 186. Электронная теория дисперсии светя
§ 187. Поглощение (абсорбция) света
§ 189. Излучение Вавилова — Черенкова
§ 190. Естественный и поляризованный свет
§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
§ 192. Двойное лучепреломление
§ 193. Поляризационные призмы и поляроиды
§ 194. Анализ поляризованного света
§ 195. Искусственная оптическая анизотропия
§ 196. Вращение плоскости поляризации
Глава 26 Квантовая природа излучения
§ 197. Тепловое излучение и его характеристики
§ 199. Законы Стефана — Больцмана и смещения Вина
§ 200. Формулы Рэлея — Джинса и Планка
§ 201. Оптическая пирометрия. Тепловые источники света
§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
§ 205. Масса и импульс фотона. Давление света
§ 206. Эффект Комптона и его элементарная теория
§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения
6 ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ
Глава 27 Теория атома водорода по Бору
§ 208. Модели атома Томсона и Резерфорда
§ 209. Линейчатый спектр атома водорода
§ 212. Спектр атома водорода по Бору
Глава 28 Элементы квантовой механики
§ 213. Корпускулярно-волновой дуализм свойств вещества
§ 214. Некоторые свойства волн да Бройля
§ 215. Соотношение неопределенностей
§ 216. Волновая функция и ее статистический смысл
§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
§ 218. Принцип причинности в квинтовой механике
§ 219. Движение свободной частицы
§ 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
§ 222. Линейный гармонический осциллятор в квантовой механике
Глава 29 Элементы современной физики атомов и молекул
§ 223. Атом водорода в квантовой механике
§ 224. 1s-Состояние электрона в атоме водорода
§ 225. Спин электрона. Спиновое квантовое число
§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
§ 227. Принцип Паули. Распределение электронов в атоме по состояниям
§ 228. Периодическая система элементов Менделеева
§ 230. Молекулы: химические связи, понятие об энергетических уровнях
§ 231. Молекулярные спектры. Комбинационное рассеяние света
§ 232. Поглощение. Спонтанное и вынужденное излучения
§ 233. Оптические квантовые генераторы (лазеры)
Глава 30 Элементы квантовой статистики
§ 234. Квантовая статистика. Фазовое пространство. Функция распределения
§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
§ 236. Вырожденный электронный газ в металлах
§ 237. Понятие о квантовой теории теплоемкости. Фононы
§ 238. Выводы квантовой теории электропроводности металлов
§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона
Глава 31 Элементы физики твердого тела
§ 240. Понятие о зонной теории твердых тел
§ 241. Металлы, диэлектрики и полупроводники по зонной теории
§ 242. Собственная проводимость полупроводников
§ 243. Примесная проводимость полупроводников
§ 244. Фотопроводимость полупроводников
§ 245. Люминесценция твердых тел
§ 246. Контакт двух металлов по зонной теории
§ 247. Термоэлектрические явления и их применение
§ 248. Выпрямление на контакте металл — полупроводник
§ 249. Контакт электронного и дырочного полупроводников (p-n-переход)
§ 250. Полупроводниковые диоды и триоды (транзисторы)
7 ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Глава 32 Элементы физики атомного ядра
§ 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
§ 252. Дефект массы и энергия связи ядра
§ 253. Спин ядра и его магнитный момент
§ 254. Ядерные силы. Модели ядра
§ 255. Радиоактивное излучение и его виды
§ 256. Закон радиоактивного распада. Правила смещения
§ 257. Закономерности -распада
§ 259. Гамма-излучение и его свойства
§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра*)
§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
§ 262. Ядерные реакции и их основные типы
§ 263. Позитрон. +-Распад. Электронный захват
§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
§ 267. Понятие о ядерной энергетике
§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
Глава 33 Элементы физики элементарных частиц
§ 272. Типы взаимодействий элементарных частиц
§ 274. Гипероны. Странность и четность элементарных частиц
В ядерной физике вводится характерное ядерное время — время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d10–15 м). Так, для частицы с энергией 1 МэВ (что соответствует ее скорости v107 м/с) характерное ядерное время =10–15 м/107 м/с=10–22 с. С другой стороны, доказано, что время жизни составного ядра равно 10–16—10–12 с, т. е. составляет (106—1010) . Это же означает, что за время жизни составного ядра может произойти очень много столкновений нуклонов между собой, т. е. перераспределение энергии между нуклонами действительно возможно. Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому характер распада составного ядра (испускание им частицы b) — вторая стадия ядерной реакции — не зависит от способа образования составного ядра — первой стадии.
Если испущенная частица тождественна с захваченной (bа), то схема (262.1) описывает рассеяние частицы: упругое — при Еb=Еа, неупругое — при ЕbЕа. Если же испущенная частица не тождественна с захваченной (bа), то имеем дело с ядерной реакцией в прямом смысле слова.
Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например, реакции, вызываемые быстрыми нуклонами и дейтронами).
Ядерные реакции классифицируются по следующим признакам:
1) по роду участвующих в них частиц — реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, -частиц); реакции под действием -квантов;
2) по энергии вызывающих их частиц — реакции при малых энергиях (порядка электрон-вольт), происходящие в основном с участием нейтронов; реакции при средних энергиях (до нескольких мегаэлектрон-вольт), происходящие с участием -квантов и заряженных частиц (протоны, -частицы); реакции при высоких энергиях (сотни и тысячи мегаэлектрон-вольт), приводящие к рождению отсутствующих в свободном состоянии элементарных частиц и имеющие большое значение для их изучения;
3) по роду участвующих в них ядер — реакции на легких ядрах (А< 50); реакции на средних ядрах (50<А< 100); реакции на тяжелых ядрах (А> 100);
4) по характеру происходящих ядерных превращений — реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата (в этих реакциях составное ядро не испускает никаких частиц, а переходит в основное состояние, излучая один или несколько -квантов).
Первая в истории ядерная реакция осуществлена Э. Резерфордом (1919) при бомбардировке ядра азота -частицами, испускаемыми радиоактивным источником:
§ 263. Позитрон. +-Распад. Электронный захват
П. Дираком было получено (1928) релятивистское волновое уравнение для электрона, которое позволило объяснить все основные свойства электрона, в том числе наличие у него спина и магнитного момента. Замечательной особенностью уравнения Дирака оказалось то, что из него для полной энергии свободного электрона получались не только положительные, но и отрицательные значения. Этот результат мог быть объяснен лишь предположением о существовании античастицы электрона — позитрона.
Гипотеза Дирака, недоверчиво воспринимавшаяся большинством физиков, была блестяще подтверждена в 1932 г. К. Андерсеном (американский физик (р. 1905); Нобелевская премия 1936 г.), обнаружившим позитрон в составе космического излучения. Существование позитронов было доказано наблюдением их треков в камере Вильсона, помещенной в магнитном поле. Эти частицы в камере отклонялись так, как отклоняется движущийся положительный заряд. Опыты показали, что позитрон е — частица с массой покоя, в точности равной массе покоя электрона, и спином ½ (в единицах ), несущая положительный электрический заряд +е.
Жолио-Кюри — Фредерик (1900—1958) и Ирен (1897—1956), — бомбардируя различные ядра -частицами (1934), обнаружили искусственно-радиоактивные ядра (см. § 255), испытывающие –-распад, а реакции на В, Аl и Mg привели к искусственно-радиоактивным ядрам, претерпевающим +-распад, или позитронный распад:
(Нобелевская премия 1956 г.) Наличие в этих реакциях позитронов доказано при изучении их треков в камере Вильсона, помещенной в магнитное поле.
Таким образом, в экспериментах Жолио-Кюри, с одной стороны, открыта искусственная радиоактивность, а с другой — впервые обнаружен позитронный радиоактивный распад.
Энергетический +-спектр, как и –-спектр (см. § 258), непрерывен. +-Распад подчиняется следующему правилу смещения:
Процесс +-распада протекает так, как если бы один из протонов ядра превратился в нейтрон, испустив при этом позитрон и нейтрино:
(263.1)
причем одновременный выброс нейтрино вытекает из тех же соображений, которые излагались при обсуждении –-распада (см. § 258). Так как масса покоя протона меньше, чем у нейтрона, то реакция (263.1) для свободного протона наблюдаться не может. Однако для протона, связанного в ядре благодаря ядерному взаимодействию частиц, эта реакция оказывается энергетически возможной.
Вскоре после опытов К. Андерсена, а также обоснования +-распада было установлено, что позитроны могут рождаться при взаимодействии -квантов большой энергии (Е > 1,02 МэВ = 2meс2) с веществом (см. также § 259). Этот процесс идет по схеме
(263.2)
Электронно-позитронные пары были действительно обнаружены в помещенной в магнитное поле камере Вильсона, в которой электрон и позитрон, имеющие противоположные по знаку заряды, отклонялись в противоположные стороны.
Для выполнения соотношения (263.2) помимо выполнения законов сохранения энергии и импульса необходимо, чтобы фотон обладал целым спином, равным 0 или 1, поскольку спины электрона и позитрона равны ½ . Ряд экспериментов и теоретических выкладок привели к выводу, что спин фотона действительно равен 1 (в единицах ).
При столкновении позитрона с электроном происходит их аннигиляция:
(263.3)
в ее процессе электронно-позитронная пара превращается в два -кванта, причем энергия пары переходит в энергию фотонов. Появление в этом процессе двух -квантов следует из закона сохранения импульса и энергии. Реакция (263.3) подтверждена прямыми экспериментами под руководством российского ученого Л. А. Арцимовича (1909—1973). Процессы (263.2) и (263.3) — процессы возникновения и превращения электронно-позитронных пар — являются примером взаимосвязи различных форм материи: в этих процессах материя в форме вещества превращается в материю в форме электромагнитного поля, и наоборот.
Для многих ядер превращение протона в нейтрон, помимо описанного процесса (263.1), происходит посредством электронного захвата, или е-захвата, при котором ядро спонтанно захватывает электрон с одной из внутренних оболочек атома (К, L и т. д.), испуская нейтрино:
Необходимость появления нейтрино вытекает из закона сохранения спина. Схема е-захвата:
т. е. один из протонов ядра превращается в нейтрон, заряд ядра убывает на единицу и оно смещается влево так же, как и при позитронном распаде.
Электронный захват обнаруживается по сопровождающему его характеристическому рентгеновскому излучению, возникающему при заполнении образовавшихся вакансий в электронной оболочке атома (именно так е-захват и был открыт в 1937 г.). При е-захвате, кроме нейтрино, никакие другие частицы не вылетают, т. е. вся энергия распада уносится нейтрино. В этом е-захват (часто его называют третьим видом -распада) существенно отличается от -распадов, при которых вылетают две частицы, между которыми и распределяется энергия распада. Примером электронного захвата может служить превращение радиоактивного ядра бериллия Ве в стабильное ядро Li:
§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
Нейтроны, являясь электрически нейтральными частицами, не испытывают кулоновского отталкивания и поэтому легко проникают в ядра и вызывают разнообразные ядерные превращения. Изучение ядерных реакций под действием нейтронов не только сыграло огромную роль в развитии ядерной физики, но и привело к появлению ядерных реакторов (см. § 267).
Краткая история открытия нейтрона такова. Немецкие физики В. Боте (1891—1957) и Г. Беккер в 1930 г., облучая ряд элементов, в частности ядра бериллия, -частицами, обнаружили возникновение излучения очень большой проникающей способности. Так как сильно проникающими могут быть только нейтральные частицы, то было высказано предположение, что обнаруженное излучение — жесткие -лучи с энергией примерно 7 МэВ (энергия рассчитана по поглощению). Дальнейшие эксперименты (Ирен и Фредерик Жолио-Кюри, 1931 г.) показали, что обнаруженное излучение, взаимодействуя с водородосодержащими соединениями, например парафином, выбивает протоны с пробегами примерно 26 см. Из расчетов следовало, что для получения протонов с такими пробегами предполагаемые -кванты должны были обладать фантастической по тем временам энергией 50 МэВ вместо расчетных 7 МэВ!
Пытаясь найти объяснение описанным экспериментам, английский физик Д. Чэдвик (1891—1974) предположил (1932), а впоследствии доказал, что новое проникающее излучение представляет собой не -кванты, а поток тяжелых нейтральных частиц, названных им нейтронами. Таким образом, нейтроны были обнаружены в следующей ядерной реакции:
Эта реакция не является единственной, ведущей к выбрасыванию из ядер нейтронов (например, нейтроны возникают в реакциях Li (, n) B и В (, п) N).
Характер ядерных реакций под действием нейтронов зависят от их скорости (энергии). В зависимости от энергии нейтроны условно делят на две группы: медленные и быстрые. Область энергий медленных нейтронов включает в себя область ультрахолодных (с энергией до 10–7 эВ), очень холодных (10–7 — 10–4 эВ), холодных (10–4 — 10–3 эВ), тепловых (10–3 — 0,5 эВ) и резонансных (0,5 — 104 эВ) нейтронов. Ко второй группе можно отнести быстрые (104 — 108 эВ), высокоэнергетичные (108 — 1010 эВ) и релятивистские (1010 эВ) нейтроны.
Замедлить нейтроны можно пропуская их через какое-либо вещество, содержащее водород (например, парафин, вода). Проходя через такие вещества, быстрые нейтроны испытывают рассеяние на ядрах и замедляются до тех пор, пока их энергия не станет равной, например, энергии теплового движения атомов вещества замедлителя, т. е. равной приблизительно kT.
Медленные нейтроны эффективны для возбуждения ядерных реакций, так как они относительно долго находятся вблизи атомного ядра. Благодаря этому вероятность захвата нейтрона ядром становится довольно большой. Однако энергия медленных нейтронов мала, потому они не могут вызывать, например, неупругое рассеяние. Для медленных нейтронов характерны упругое рассеяние на ядрах (реакция типа (п, п)) и радиационный захват (реакция типа (п, )). Реакция (п, ) приводит к образованию нового изотопа исходного вещества:
например
Часто в результате (n, )-реакции образуются искусственные радиоактивные изо-топы, дающие, как правило, –-распад. Например, в результате реакции
образуется радиоактивный изотоп Р, претерпевающий –-распад с образованием стабильного изотопа серы:
Под действием медленных нейтронов на некоторых легких ядрах наблюдаются также реакции захвата нейтронов с испусканием заряженных частиц—протонов и -частиц (под действием тепловых нейтронов):
(используется для обнаружения нейтронов) или
(используется для получения трития, в частности в термоядерных взрывах; см. § 268).
Реакции типа (n, р) и (n,), т. е. реакции с образованием заряженных частиц, происходят в основном под действием быстрых нейтронов, так как в случае медленных нейтронов энергии атомного ядра недостаточно для преодоления потенциального барьера, препятствующего вылету протонов и -частиц. Эти реакции, как и реакции радиационного захвата, часто ведут к образованию –-активных ядер.
Для быстрых нейтронов наблюдается неупругое их рассеяние, совершающееся по схеме
где вылетающий из ядра нейтрон обозначен как п', поскольку это не тот нейтрон, который проник в ядро; п' имеет энергию, меньшую энергии п, а остающееся после вылета нейтрона ядро находится в возбужденном состоянии (отмечено звездочкой), поэтому его переход в нормальное состояние сопровождается испусканием -кванта.
Когда энергия нейтронов достигает значений 10 МэВ, становятся возможными реакции типа (n, 2n). Например, в результате реакции
образуется –-активный изотоп U, претерпевающий распад по схеме
U Np + е.
§ 265. Реакция деления ядра
К началу 40-х годов работами многих ученых—Э. Ферми (Италия), О. Гана (1879—1968), Ф. Штрассмана (1902—1980) (ФРГ), О. Фриша (1904—1979) (Великобритания), Л. Мейтнер (1878—1968) (Австрия), Г.Н. Флерова (р. 1913), К.Н. Петржака (Россия) — было доказано, что при облучении урана нейтронами образуются элементы из середины Периодической системы — лантан и барий. Этот результат положил начало ядерным реакциям совершенно нового типа — реакциям деления ядра, заключающимся в том, что тяжелое ядро под действием нейтронов, а как впоследствии оказалось и других частиц делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе.
Замечательной особенностью деления ядер является то, что оно сопровождается испусканием двух-трех вторичных нейтронов, называемых нейтронами деления. Так как для средних ядер число нейтронов примерно равно числу протонов (N/Z1), а для тяжелых ядер число нейтронов значительно превышает число протонов (N/Z1,6), то образовавшиеся осколки деления перегружены нейтронами, в результате чего они и выделяют нейтроны деления. Однако испускание нейтронов деления не устраняет полностью перегрузку ядер-осколков нейтронами. Это приводит к тому, что осколки оказываются радиоактивными. Они могут претерпеть ряд –-превращений, сопровождаемых испусканием -квантов. Так как –-распад сопровождается превращением нейтрона в протон (см. (258.1)), то после цепочки –-превращений соотношение между нейтронами и протонами в осколке достигнет величины, соответствующей стабильному изотопу. Например, при делении ядра урана U
(265.1)
осколок деления Хе в результате трех актов –-распада превращается в стабильный изотоп лантана La:
Осколки деления могут быть разнообразными, поэтому реакция (265.1) не единственная приводящая к делению U. Возможна, например, реакция
Большинство нейтронов при делении испускается практически мгновенно (t 10–14 с), а часть (около 0,7%) испускается осколками деления спустя некоторое время после деления (0,05 с t 60 с). Первые из них называются мгновенными, вторые — запаздывающими. В среднем на каждый акт деления приходится 2,5 испущенных нейтронов. Они имеют сравнительно широкий энергетический спектр в пределах от 0 до 7 МэВ, причем на один нейтрон в среднем приходится энергия около 2 МэВ.
Расчеты показывают, что деление ядер должно сопровождаться также выделением большого количества энергии. В самом деле, удельная энергия связи для ядер средней массы составляет примерно 8,7 МэВ, в то время как для тяжелых ядер она равна 7,6 МэВ (см. § 252). Следовательно, при делении тяжелого ядра на два осколка должна освобождаться энергия, равная примерно 1,1 МэВ на один нуклон.
Эксперименты подтверждают, что при каждом акте деления действительно выделяется огромная энергия, которая распределяется между осколками (основная доля), нейтронами деления, а также между продуктами последующего распада осколков деления.