ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.07.2020
Просмотров: 34245
Скачиваний: 520
СОДЕРЖАНИЕ
Предмет физики и ее связь с другими науками
§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
§ 3. Ускорение и его составляющие
§ 4. Угловая скорость и угловое ускорение
Глава 2 Динамика материальной точки и поступательного движения твердого тела
§ 5. Первый закон Ньютона. Масса. Сила
§ 9. Закон сохранения импульса. Центр масс
§ 10. Уравнение движения тела переменной массы
§11. Энергия, работа, мощность
§ 12. Кинетическая и потенциальная энергии
§ 13. Закон сохранения энергии
§ 14. Графическом представление энергии
§ 15. Удар абсолютно упругих и неупругих тел
Глава 4 Механика твердого тела
§ 17. Кинетическая энергия вращения
§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела
§ 19. Момент импульса и закон то сохранения
§ 21. Деформации твердого тела
Глава 5 Тяготение. Элементы теории поля
§ 22. Законы Кеплера. Закон всемирного тяготения
§ 23. Сила тяжести и вес. Невесомость
§ 24. Поле тяготения и то напряженность
§ 25. Работа в поле тяготения. Потенциал поля тяготения
§ 27. Неинерциальные системы отсчета. Силы инерции
Глава 6 Элементы механики жидкостей
§ 28. Давление в жидкости и газе
§ 30. Уравнение Бернулли и следствия из него
§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
§ 32. Методы определения вязкости
§ 33. Движение тел в жидкостях и газах
Глава 7 Элементы специальной (частной) теории относительности
§ 34. Преобразования Галилея. Механический принцип относительности
§ 35. Постулаты специальной (частной) теории относительности
§ 37. Следствия из преобразований Лоренца
§ 38. Интервал между событиями
§ 39. Основной закон релятивистской динамики материальной точки
§ 40. Закон взаимосвязи массы и энергии
2 ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ
Глава 8 Молекулярно-кинетическая теория идеальных газов
§ 41. Статистический и термодинамический методы. Опытные законы идеального газа
§ 42. Уравнение Клапейрона — Менделеева
§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов
§ 45. Барометрическая формула. Распределение Больцмана
§ 46. Среднее число столкновений и средняя длина свободного пробега молекул
§ 47. Опытное обоснование молекулярно-кинетической теории
§ 48. Явления переноса в термодинамически неравновесных системах
§ 48. Вакуум и методы его получения. Свойства ультраразреженных газов
§ 51. Первое начало термодинамики
§ 52. Работа газа при изменении его объема
§ 54. Применение первого начала термодинамики к изопроцессам
§ 55. Адиабатический процесс. Политропный процесс
§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы
§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
§ 58. Второе начало термодинамики
§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа
Глава 10 Реальные газы, жидкости и твердые тела
§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия
§ 61. Уравнение Ван-дер-Ваальса
§ 62. Изотермы Ван-дер-Ваальса и их анализ
§ 63. Внутренняя энергия реального газа
§ 66. Свойства жидкостей. Поверхностное натяжение
§ 68. Давление под искривленной поверхностью жидкости
§ 70. Твердые тела. Моно- и поликристаллы
§ 71. Типы кристаллических твердых тел
§ 73. Теплоемкость твердых тел
§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
§ 75. Фазовые переходы I и П рода
§ 76. Диаграмма состояния. Тройная точка
3 ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ
§ 77. Закон сохранения электрического заряда
§ 79. Электростатическое поле. Напряженность электростатического поля
§ 80. Принцип суперпозиции электростатических полей. Поле диполя
§ 81. Теорема Гаусса для электростатического поля в вакууме
§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
§ 83. Циркуляция вектора напряженности электростатического поля
§ 84. Потенциал электростатического поля
§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
§ 86. Вычисление разности потенциалов по напряженности поля
§ 87. Типы диэлектриков. Поляризация диэлектриков
§ 88. Поляризованность. Напряженность поля в диэлектрике
§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
§ 90. Условия на границе раздела двух диэлектрических сред
§ 92. Проводники в электростатическом поле
§ 93. Электрическая емкость уединенного проводника
Глава 12 Постоянный электрический ток
§ 96. Электрический ток, сила и плотность тока
§ 97. Сторонние силы. Электродвижущая сила и напряжение
§ 98. Закон Ома. Сопротивление проводников
§ 99. Работа и мощность тока. Закон Джоуля — Ленца
§ 100. Закон Ома для неоднородного участка цепи
§ 101. Правила Кирхгофа для разветвленных цепей
Глава 13 Электрические токи в металлах, вакууме и газах
§ 102. Элементарная классическая теория электропроводности металлов
§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
§ 104. Работа выхода электронов из металла
§ 105. Эмиссионные явления и их применение
§ 106. Ионизация газов. Несамостоятельный газовый разряд
§ 107. Самостоятельный газовый разряд и его типы
§ 109. Магнитное поле и его характеристики
§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
§ 111. Закон Ампера. Взаимодействие параллельных токов
§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
§ 113. Магнитное поле движущегося заряда
§ 114. Действие магнитного поля на движущийся заряд
§ 115. Движение заряженных частиц в магнитном поле
§ 116. Ускорители заряженных частиц
§ 118. Циркуляция вектора В магнитного поля в вакууме
§ 119. Магнитные поля соленоида и тороида
§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля В
§ 121. Работа по перемещению проводника и контура с током в магнитном поле
Глава 15 Электромагнитная индукция
§122. Явление электромагнитной индукции (опыты Фарадея)
§ 123. Закон Фарадея и его вывод из закона сохранения энергии
§ 124. Вращение рамки в магнитном поле
§ 125. Вихревые токи (токи Фуко)
§ 126. Индуктивность контура. Самоиндукция
§ 127. Токи при размыкании и замыкании цепи
§ 130. Энергия магнитного поля
Глава 16 Магнитные свойства вещества
§ 131. Магнитные моменты электронов и атомов
§ 133. Намагниченность. Магнитное поле в веществе
§ 134. Условия на границе раздела двух магнетиков
§ 135. Ферромагнетики и их свойства
§ 136. Природа ферромагнетизма
Глава 17 Основы теории Максвелла для электромагнитного поля
§ 137. Вихревое электрическое поле
§ 139. Уравнения Максвелла для электромагнитного поля
Глава 18 Механические и электромагнитные колебания
§ 140. Гармонические колебания и их характеристики
§ 141. Механические гармонические колебания
§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники
§ 143. Свободные гармонические колебания в колебательном контуре
§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
§ 145. Сложение взаимно перпендикулярных колебаний
§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
§ 152. Мощность, выделяемая в цепи переменного тока
§ 153. Волновые процессы. Продольные и поперечные волны
§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
§ 155. Принцип суперпозиции. Групповая скорость
S 159. Эффект Доплере в акустике
§ 160. Ультразвук и его применение
Глава 20 Электромагнитные волны
§ 161. Экспериментальное получение электромагнитных волн
§ 162. Дифференциальное уравнение электромагнитной волны
§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля
§ 164. Излучение диполя. Применение электромагнитных волн
5 ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ
Глава 21 Элементы геометрической и электронной оптики
§ 165. Основные законы оптики. Полное отражение
§ 166. Тонкие линзы. Изображение предметов с помощью линз
§ 187. Аберрации (погрешности) оптических систем
§ 168. Основные фотометрические величины и их единицы
§ 189. Элементы электронной оптики
§ 170. Развитие представлений о природе света
§ 171. Когерентность и монохроматичность световых волн
§ 173. Методы наблюдения интерференции света
§ 174. Интерференция света в тонких пленках
§ 175. Применение интерференции света
§ 176. Принцип Гюйгенса — Френеля
§ 177. Метод зон Френеля. Прямолинейное распространение света
§ 178. Дифракция Френеля на круглом отверстии и диске
§ 178. Дифракция Фраунгофера на одной щели
§ 180. Дифракция Фраунгофера на дифракционной решетке
§ 181. Пространственная решетка. Рассеяние света
§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
§ 183. Разрешающая способность оптических приборов
Глава 24 Взаимодействие электромагнитных волн с веществом
§ 186. Электронная теория дисперсии светя
§ 187. Поглощение (абсорбция) света
§ 189. Излучение Вавилова — Черенкова
§ 190. Естественный и поляризованный свет
§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
§ 192. Двойное лучепреломление
§ 193. Поляризационные призмы и поляроиды
§ 194. Анализ поляризованного света
§ 195. Искусственная оптическая анизотропия
§ 196. Вращение плоскости поляризации
Глава 26 Квантовая природа излучения
§ 197. Тепловое излучение и его характеристики
§ 199. Законы Стефана — Больцмана и смещения Вина
§ 200. Формулы Рэлея — Джинса и Планка
§ 201. Оптическая пирометрия. Тепловые источники света
§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
§ 205. Масса и импульс фотона. Давление света
§ 206. Эффект Комптона и его элементарная теория
§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения
6 ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ
Глава 27 Теория атома водорода по Бору
§ 208. Модели атома Томсона и Резерфорда
§ 209. Линейчатый спектр атома водорода
§ 212. Спектр атома водорода по Бору
Глава 28 Элементы квантовой механики
§ 213. Корпускулярно-волновой дуализм свойств вещества
§ 214. Некоторые свойства волн да Бройля
§ 215. Соотношение неопределенностей
§ 216. Волновая функция и ее статистический смысл
§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
§ 218. Принцип причинности в квинтовой механике
§ 219. Движение свободной частицы
§ 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
§ 222. Линейный гармонический осциллятор в квантовой механике
Глава 29 Элементы современной физики атомов и молекул
§ 223. Атом водорода в квантовой механике
§ 224. 1s-Состояние электрона в атоме водорода
§ 225. Спин электрона. Спиновое квантовое число
§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
§ 227. Принцип Паули. Распределение электронов в атоме по состояниям
§ 228. Периодическая система элементов Менделеева
§ 230. Молекулы: химические связи, понятие об энергетических уровнях
§ 231. Молекулярные спектры. Комбинационное рассеяние света
§ 232. Поглощение. Спонтанное и вынужденное излучения
§ 233. Оптические квантовые генераторы (лазеры)
Глава 30 Элементы квантовой статистики
§ 234. Квантовая статистика. Фазовое пространство. Функция распределения
§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
§ 236. Вырожденный электронный газ в металлах
§ 237. Понятие о квантовой теории теплоемкости. Фононы
§ 238. Выводы квантовой теории электропроводности металлов
§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона
Глава 31 Элементы физики твердого тела
§ 240. Понятие о зонной теории твердых тел
§ 241. Металлы, диэлектрики и полупроводники по зонной теории
§ 242. Собственная проводимость полупроводников
§ 243. Примесная проводимость полупроводников
§ 244. Фотопроводимость полупроводников
§ 245. Люминесценция твердых тел
§ 246. Контакт двух металлов по зонной теории
§ 247. Термоэлектрические явления и их применение
§ 248. Выпрямление на контакте металл — полупроводник
§ 249. Контакт электронного и дырочного полупроводников (p-n-переход)
§ 250. Полупроводниковые диоды и триоды (транзисторы)
7 ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Глава 32 Элементы физики атомного ядра
§ 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
§ 252. Дефект массы и энергия связи ядра
§ 253. Спин ядра и его магнитный момент
§ 254. Ядерные силы. Модели ядра
§ 255. Радиоактивное излучение и его виды
§ 256. Закон радиоактивного распада. Правила смещения
§ 257. Закономерности -распада
§ 259. Гамма-излучение и его свойства
§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра*)
§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
§ 262. Ядерные реакции и их основные типы
§ 263. Позитрон. +-Распад. Электронный захват
§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
§ 267. Понятие о ядерной энергетике
§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
Глава 33 Элементы физики элементарных частиц
§ 272. Типы взаимодействий элементарных частиц
§ 274. Гипероны. Странность и четность элементарных частиц
При малых значениях числа Рейнольдса наблюдается ламинарное течение, переход от ламинарного течения к турбулентному происходит в области а при (для гладких труб) течение—турбулентное. Если число Рейнольдса одинаково, то режим течения различных жидкостей (газов) в трубах разных сечений одинаков.
§ 32. Методы определения вязкости
1. Метод Стокса.* Этот метод определения вязкости основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы.
* Дж. Стокс (1819—1903) — английский физик и математик.
На шарик, падающий в жидкости вертикально вниз, действуют три силы: сила тяжести Р=4/3r3g ( — плотность шарика), сила Архимеда Р=4/3r3'g (' — плотность жидкости) и сила сопротивления, эмпирически установленная Дж. Стоксом: F=6rv, где r — радиус шарика, v — его скорость. При равномерном движении шарика
откуда
Измерив скорость равномерного движения шарика, можно определить вязкость жидкости (газа).
2. Метод Пуазейля.* Этот метод основан на ламинарном течении жидкости в тонком капилляре. Рассмотрим капилляр радиусом R и длиной l. В жидкости мысленно выделим цилиндрический слой радиусом r и толщиной dr (рис. 54). Сила внутреннего трения (см. (31.1)), действующая на боковую поверхность этого слоя,
где dS — боковая поверхность цилиндрического слоя; знак минус означает, что при возрастании радиуса скорость уменьшается.
* Ж. Пуазейль (1799—1868) — французский физиолог и физик.
Для установившегося течения жидкости сила внутреннего трения, действующая на боковую поверхность цилиндра, уравновешивается силой давления, действующей на его основание:
После интегрирования, полагая, что у стенок имеет место прилипание жидкости, т. е. скорость на расстоянии R от оси равна нулю, получаем
Отсюда видно, что скорости частиц жидкости распределяются по параболическому закону, причем вершина параболы лежит на оси трубы (см. также рис. 53).
За время t из трубы вытечет жидкость, объем которой
откуда вязкость
§ 33. Движение тел в жидкостях и газах
Одной из важнейших задач аэро- и гидродинамики является исследование движения твердых тел в газе и жидкости, в частности изучение тех сил, с которыми среда действует на движущееся тело. Эта проблема приобрела особенно большое значение в связи с бурным развитием авиации и увеличением скорости движения морских судов.
На тело, движущееся в жидкости или газе, действуют две силы (равнодействующую их обозначим R), одна из которых (Rx) направлена в сторону, противоположную движению тела (в сторону потока), — лобовое сопротивление, а вторая (Ry) перпендикулярна этому направлению — подъемная сила (рис. 55).
Если тело симметрично и его ось симметрии совпадает с направлением скорости, то на него действует только лобовое сопротивление, подъемная же сила в этом случае равна нулю. Можно доказать, что в идеальной жидкости равномерное движение происходит без лобового сопротивления. Если рассмотреть движение цилиндра в такой жидкости (рис. 56), то картина линий тока симметрична как относительно прямой, проходящей через точки А и В, так и относительно прямой, проходящей через точки С и D, т. с. результирующая сила давления на поверхность цилиндра будет равна нулю.
Иначе обстоит дело при движении тел в вязкой жидкости (особенно при увеличении скорости обтекания). Вследствие вязкости среды в области, прилегающей к поверхности тела, образуется пограничный слой частиц, движущихся с меньшими скоростями. В результате тормозящего действия этого слоя возникает вращение частиц и движение жидкости в пограничном слое становится вихревым. Если тело не имеет обтекаемой формы (нет плавно утончающейся хвостовой части), то пограничный слой жидкости отрывается от поверхности тела. За телом возникает течение жидкости (газа), направленное противоположно набегающему потоку. Оторвавшийся пограничный слой, следуя за этим течением, образует вихри, вращающиеся в противоположные стороны (рис. 57).
Лобовое сопротивление зависит от формы тела и его положения относительно потока, что учитывается безразмерным коэффициентом сопротивления Сx, определяемым экспериментально:
(33.1)
где — плотность среды; v — скорость движения тела; S — наибольшее поперечное сечение тела.
Составляющую Rx можно значительно уменьшить, подобрав тело такой формы, которая не способствует образованию завихрения.
Подъемная сила может быть определена формулой, аналогичной (33.1):
где Су — безразмерный коэффициент подъемной силы.
Для крыла самолета требуется большая подъемная сила при малом лобовом сопротивлении (это условие выполняется при малых углах атаки (угол к потоку); см. рис. 55). Крыло тем лучше удовлетворяет этому условию, чем больше величина К=Су/Сx называемая качеством крыла. Большие заслуги в конструировании требуемого профиля крыла и изучении влияния геометрической формы тела на коэффициент подъемной силы принадлежат «отцу русской авиации» Н. Е. Жуковскому (1847—1921).
Задачи
6.1. Полый железный шар ( =7,87 г/см3) весит в воздухе 5 Н, а в воде (' = 1 г/см3) — 3 Н. Пренебрегая выталкивающей силой воздуха, определить объем внутренней полости шара. [139 см3]
6.2. Бак цилиндрической формы площадью основания S = 1 м2 и объемом V = 3 м3 заполнен водой. Пренебрегая вязкостью воды, определить время t, необходимое для опустошения бака, если на дне бака образовалось круглое отверстие площадью S1 =10 см2.
6.3. Сопло фонтана, дающего вертикальную струю высотой H = 5 м, имеет форму усеченного конуса, сужающегося вверх. Диаметр нижнего сечения d1= 6 см, верхнего — d2= 2 см. Высота сопла h = 1 м. Пренебрегая сопротивлением воздуха в струе и сопротивлением в сопле, определить: 1) расход воды в 1 с, подаваемой фонтаном; 2) разность р давления в нижнем сечении и атмосферного давления. Плотность воды =1 г/см3. [1) d2/4 = 3,1 х 10-3 м3/с; 2) p = pgh + pgH (1– d/d=58,3 кПа]
6.4. На горизонтальной поверхности стоит цилиндрический сосуд, в боковой поверхности которого имеется отверстие. Поперечное сечение отверстия значительно меньше поперечного сечения самого сосуда. Отверстие расположено на расстоянии h1 = 64 см ниже уровня воды в сосуде, который поддерживается постоянным, и на расстоянии h2 = 25 см от дна сосуда. Пренебрегая вязкостью воды, определить, на каком расстоянии по горизонтали от сосуда падает на поверхность струя, вытекающая из отверстия. [80 см]
6.5. В широком сосуде, наполненном глицерином (плотность =1,2 г/см3), падает с установившейся скоростью 5 см/с стеклянный шарик (' = 2,7 г/см3) диаметром 1 мм. Определить динамическую вязкость глицерина. [1,6 Пас]
6.6. В боковую поверхность цилиндрического сосуда, установленного на столе, вставлен на высоте h1 = 5 см от его дна капилляр внутренним диаметром d = 2 мм и длиной l = 1 см. В сосуде поддерживается постоянный уровень машинного масла (плотность = 0,9 г/см3 и динамическая вязкость = 0,1 Пас) на высоте h2 = 80 см выше капилляра. Определить, на каком расстоянии по горизонтали от конца капилляра падает на поверхность стола струя масла, вытекающая из отверстия.
6.7. Определить наибольшую скорость, которую может приобрести свободно падающий в воздухе (=1,29 г/см3) стальной шарик (' = 9 г/см3) массой m = 20 г. Коэффициент Сх принять равным 0,5. [94 см/с]
Глава 7 Элементы специальной (частной) теории относительности
§ 34. Преобразования Галилея. Механический принцип относительности
В классической механике справедлив механический принцип относительности (принцип относительности Галилея): законы динамики одинаковы во всех инерциальных системах отсчета.
Для его доказательства рассмотрим две системы отсчета: инерциальную систему K (с координатами х, у, z), которую условно будем считать неподвижной, и систему K' (с координатами x', у', z'), движущуюся относительно K равномерно и прямолинейно со скоростью u (u=const). Отсчет времени начнем с момента, когда начала координат обеих систем совпадают. Пусть в произвольный момент времени t расположение этих систем друг относительно друга имеет вид, изображенный на рис. 58. Скорость u направлена вдоль OO', радиус-вектор, проведенный из О в О', r0=ut.
Найдем связь между координатами произвольной точки А в обеих системах. Из рис. 58 видно, что
(34.1)
Уравнение (34.1) можно записать в проекциях на оси координат:
(34.2)
Уравнения (34.1) и (34.2) носят название преобразований координат Галилея.
В частном случае, когда система К' движется со скоростью т вдоль положительного направления оси х системы К (в начальный момент времени оси координат совпадают), преобразования координат Галилея имеют вид
В классической механике предполагается, что ход времени не зависит от относительного движения систем отсчета, т. е. к преобразованиям (34.2) можно добавить еще одно уравнение:
(34.3)
Записанные соотношения справедливы лишь в случае классической механики (u<<с), а при скоростях, сравнимых со скоростью света, преобразования Галилея заменяются более общими преобразованиями Лоренца* (§ 36).
* Х. Лоренц (1853—1928) — нидерландский физик-теоретик.
Продифференцировав выражение (34.1) по времени (с учетом (34.3)), получим уравнение
(34.4)
которое представляет собой правило сложения скоростей в классической механике.
Ускорение в системе отсчета К
Таким образом, ускорение точки А в системах отсчета К и К', движущихся друг относительно друга равномерно и прямолинейно, одинаково:
(34.5)
Следовательно, если на точку А другие тела не действуют (а=0), то, согласно (34.5), и а'=0, т. е. система К' является инерциальной (точка движется относительно нее равномерно и прямолинейно или покоится).
Таким образом, из соотношения (34.5) вытекает подтверждение механического принципа относительности: уравнения динамики при переходе от одной инерциальной системы отсчета к другой не изменяются, т. е. являются инвариантными по отношению к преобразованиям координат. Галилей обратил внимание, что никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно.
§ 35. Постулаты специальной (частной) теории относительности
Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (v<<с). Однако в конце XIX в. выяснилось, что выводы классической механики противоречат некоторым опытным данным, в частности при изучении движения быстрых заряженных частиц оказалось, что их движение не подчиняется законам механики. Далее возникли затруднения при попытках применить механику Ньютона к объяснению распространения света. Если источник и приемник света движутся друг относительно друга равномерно и прямолинейно, то, согласно классической механике, измеренная скорость должна зависеть от относительной скорости их движения. Американский физик А. Майкельсон (1852—1913) в 1881 г., а затем в 1887 г. совместно с Е. Морли (американский физик, 1838—1923) пытался обнаружить движение Земли относительно эфира (эфирный ветер) — опыт Майкельсона — Морли, применяя интерферометр, названный впоследствии интерферометром Майкельсона (см. § 175). Обнаружить эфирный ветер Майкельсону не удалось, как, впрочем, не удалось его обнаружить и в других многочисленных опытах. Опыты «упрямо» показывали, что скорости света в двух движущихся друг относительно друга системах равны. Это противоречило правилу сложения скоростей классической механики.
Одновременно было показано противоречие между классической теорией и уравнениями (см. § 139) Дж. К. Максвелла (английский физик, 1831—1879), лежащими в основе понимания света как электромагнитной волны.
Для объяснения этих и некоторых других опытных данных необходимо было создать новую механику, которая, объясняя эти факты, содержала бы ньютоновскую механику как предельный случай для малых скоростей (v<<с). Это и удалось сделать А. Эйнштейну, который пришел к выводу о том, что мирового эфира — особой среды, которая могла бы быть принята в качестве абсолютной системы, — не существует. Существование постоянной скорости распространения света в вакууме находилось в согласии с уравнениями Максвелла.
Таким образом, А. Эйнштейн заложил основы специальной теории относительности. Эта теория представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно (см. § 13), а пространство однородно (см. § 9) и изотропно (см. § 19). Специальная теория относительности часто называется также релятивистской теорией, а специфические явления, описываемые этой теорией, — релятивистскими эффектами.
В основе специальной теории относительности лежат постулаты Эйнштейна, сформулированные им в 1905 г.
I. Принцип относительности: никакие опыты (механические, электрические, оптические), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.
П. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.
Первый постулат Эйнштейна, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает, таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления (механические, электродинамические, оптические и др.) во всех инерциальных системах отсчета протекают одинаково.
Согласно второму постулату Эйнштейна, постоянство скорости света — фундаментальное свойство природы, которое констатируется как опытный факт.
Специальная теория относительности потребовала отказа от привычных представлений о пространстве и времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.
Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное экспериментальное подтверждение, являясь тем самым обоснованием постулатов Эйнштейна — обоснованием специальной теории относительности.
§ 36. Преобразования Лоренца
Анализ явлений в инерциальных системах отсчета, проведенный А. Эйнштейном на основе сформулированных им постулатов, показал, что классические преобразования Галилея несовместимы с ними и, следовательно, должны быть заменены преобразованиями, удовлетворяющими постулатам теории относительности.