ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.07.2020
Просмотров: 34564
Скачиваний: 521
СОДЕРЖАНИЕ
Предмет физики и ее связь с другими науками
§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
§ 3. Ускорение и его составляющие
§ 4. Угловая скорость и угловое ускорение
Глава 2 Динамика материальной точки и поступательного движения твердого тела
§ 5. Первый закон Ньютона. Масса. Сила
§ 9. Закон сохранения импульса. Центр масс
§ 10. Уравнение движения тела переменной массы
§11. Энергия, работа, мощность
§ 12. Кинетическая и потенциальная энергии
§ 13. Закон сохранения энергии
§ 14. Графическом представление энергии
§ 15. Удар абсолютно упругих и неупругих тел
Глава 4 Механика твердого тела
§ 17. Кинетическая энергия вращения
§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела
§ 19. Момент импульса и закон то сохранения
§ 21. Деформации твердого тела
Глава 5 Тяготение. Элементы теории поля
§ 22. Законы Кеплера. Закон всемирного тяготения
§ 23. Сила тяжести и вес. Невесомость
§ 24. Поле тяготения и то напряженность
§ 25. Работа в поле тяготения. Потенциал поля тяготения
§ 27. Неинерциальные системы отсчета. Силы инерции
Глава 6 Элементы механики жидкостей
§ 28. Давление в жидкости и газе
§ 30. Уравнение Бернулли и следствия из него
§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
§ 32. Методы определения вязкости
§ 33. Движение тел в жидкостях и газах
Глава 7 Элементы специальной (частной) теории относительности
§ 34. Преобразования Галилея. Механический принцип относительности
§ 35. Постулаты специальной (частной) теории относительности
§ 37. Следствия из преобразований Лоренца
§ 38. Интервал между событиями
§ 39. Основной закон релятивистской динамики материальной точки
§ 40. Закон взаимосвязи массы и энергии
2 ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ
Глава 8 Молекулярно-кинетическая теория идеальных газов
§ 41. Статистический и термодинамический методы. Опытные законы идеального газа
§ 42. Уравнение Клапейрона — Менделеева
§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов
§ 45. Барометрическая формула. Распределение Больцмана
§ 46. Среднее число столкновений и средняя длина свободного пробега молекул
§ 47. Опытное обоснование молекулярно-кинетической теории
§ 48. Явления переноса в термодинамически неравновесных системах
§ 48. Вакуум и методы его получения. Свойства ультраразреженных газов
§ 51. Первое начало термодинамики
§ 52. Работа газа при изменении его объема
§ 54. Применение первого начала термодинамики к изопроцессам
§ 55. Адиабатический процесс. Политропный процесс
§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы
§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
§ 58. Второе начало термодинамики
§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа
Глава 10 Реальные газы, жидкости и твердые тела
§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия
§ 61. Уравнение Ван-дер-Ваальса
§ 62. Изотермы Ван-дер-Ваальса и их анализ
§ 63. Внутренняя энергия реального газа
§ 66. Свойства жидкостей. Поверхностное натяжение
§ 68. Давление под искривленной поверхностью жидкости
§ 70. Твердые тела. Моно- и поликристаллы
§ 71. Типы кристаллических твердых тел
§ 73. Теплоемкость твердых тел
§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
§ 75. Фазовые переходы I и П рода
§ 76. Диаграмма состояния. Тройная точка
3 ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ
§ 77. Закон сохранения электрического заряда
§ 79. Электростатическое поле. Напряженность электростатического поля
§ 80. Принцип суперпозиции электростатических полей. Поле диполя
§ 81. Теорема Гаусса для электростатического поля в вакууме
§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
§ 83. Циркуляция вектора напряженности электростатического поля
§ 84. Потенциал электростатического поля
§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
§ 86. Вычисление разности потенциалов по напряженности поля
§ 87. Типы диэлектриков. Поляризация диэлектриков
§ 88. Поляризованность. Напряженность поля в диэлектрике
§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
§ 90. Условия на границе раздела двух диэлектрических сред
§ 92. Проводники в электростатическом поле
§ 93. Электрическая емкость уединенного проводника
Глава 12 Постоянный электрический ток
§ 96. Электрический ток, сила и плотность тока
§ 97. Сторонние силы. Электродвижущая сила и напряжение
§ 98. Закон Ома. Сопротивление проводников
§ 99. Работа и мощность тока. Закон Джоуля — Ленца
§ 100. Закон Ома для неоднородного участка цепи
§ 101. Правила Кирхгофа для разветвленных цепей
Глава 13 Электрические токи в металлах, вакууме и газах
§ 102. Элементарная классическая теория электропроводности металлов
§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
§ 104. Работа выхода электронов из металла
§ 105. Эмиссионные явления и их применение
§ 106. Ионизация газов. Несамостоятельный газовый разряд
§ 107. Самостоятельный газовый разряд и его типы
§ 109. Магнитное поле и его характеристики
§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
§ 111. Закон Ампера. Взаимодействие параллельных токов
§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
§ 113. Магнитное поле движущегося заряда
§ 114. Действие магнитного поля на движущийся заряд
§ 115. Движение заряженных частиц в магнитном поле
§ 116. Ускорители заряженных частиц
§ 118. Циркуляция вектора В магнитного поля в вакууме
§ 119. Магнитные поля соленоида и тороида
§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля В
§ 121. Работа по перемещению проводника и контура с током в магнитном поле
Глава 15 Электромагнитная индукция
§122. Явление электромагнитной индукции (опыты Фарадея)
§ 123. Закон Фарадея и его вывод из закона сохранения энергии
§ 124. Вращение рамки в магнитном поле
§ 125. Вихревые токи (токи Фуко)
§ 126. Индуктивность контура. Самоиндукция
§ 127. Токи при размыкании и замыкании цепи
§ 130. Энергия магнитного поля
Глава 16 Магнитные свойства вещества
§ 131. Магнитные моменты электронов и атомов
§ 133. Намагниченность. Магнитное поле в веществе
§ 134. Условия на границе раздела двух магнетиков
§ 135. Ферромагнетики и их свойства
§ 136. Природа ферромагнетизма
Глава 17 Основы теории Максвелла для электромагнитного поля
§ 137. Вихревое электрическое поле
§ 139. Уравнения Максвелла для электромагнитного поля
Глава 18 Механические и электромагнитные колебания
§ 140. Гармонические колебания и их характеристики
§ 141. Механические гармонические колебания
§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники
§ 143. Свободные гармонические колебания в колебательном контуре
§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
§ 145. Сложение взаимно перпендикулярных колебаний
§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
§ 152. Мощность, выделяемая в цепи переменного тока
§ 153. Волновые процессы. Продольные и поперечные волны
§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
§ 155. Принцип суперпозиции. Групповая скорость
S 159. Эффект Доплере в акустике
§ 160. Ультразвук и его применение
Глава 20 Электромагнитные волны
§ 161. Экспериментальное получение электромагнитных волн
§ 162. Дифференциальное уравнение электромагнитной волны
§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля
§ 164. Излучение диполя. Применение электромагнитных волн
5 ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ
Глава 21 Элементы геометрической и электронной оптики
§ 165. Основные законы оптики. Полное отражение
§ 166. Тонкие линзы. Изображение предметов с помощью линз
§ 187. Аберрации (погрешности) оптических систем
§ 168. Основные фотометрические величины и их единицы
§ 189. Элементы электронной оптики
§ 170. Развитие представлений о природе света
§ 171. Когерентность и монохроматичность световых волн
§ 173. Методы наблюдения интерференции света
§ 174. Интерференция света в тонких пленках
§ 175. Применение интерференции света
§ 176. Принцип Гюйгенса — Френеля
§ 177. Метод зон Френеля. Прямолинейное распространение света
§ 178. Дифракция Френеля на круглом отверстии и диске
§ 178. Дифракция Фраунгофера на одной щели
§ 180. Дифракция Фраунгофера на дифракционной решетке
§ 181. Пространственная решетка. Рассеяние света
§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
§ 183. Разрешающая способность оптических приборов
Глава 24 Взаимодействие электромагнитных волн с веществом
§ 186. Электронная теория дисперсии светя
§ 187. Поглощение (абсорбция) света
§ 189. Излучение Вавилова — Черенкова
§ 190. Естественный и поляризованный свет
§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
§ 192. Двойное лучепреломление
§ 193. Поляризационные призмы и поляроиды
§ 194. Анализ поляризованного света
§ 195. Искусственная оптическая анизотропия
§ 196. Вращение плоскости поляризации
Глава 26 Квантовая природа излучения
§ 197. Тепловое излучение и его характеристики
§ 199. Законы Стефана — Больцмана и смещения Вина
§ 200. Формулы Рэлея — Джинса и Планка
§ 201. Оптическая пирометрия. Тепловые источники света
§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
§ 205. Масса и импульс фотона. Давление света
§ 206. Эффект Комптона и его элементарная теория
§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения
6 ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ
Глава 27 Теория атома водорода по Бору
§ 208. Модели атома Томсона и Резерфорда
§ 209. Линейчатый спектр атома водорода
§ 212. Спектр атома водорода по Бору
Глава 28 Элементы квантовой механики
§ 213. Корпускулярно-волновой дуализм свойств вещества
§ 214. Некоторые свойства волн да Бройля
§ 215. Соотношение неопределенностей
§ 216. Волновая функция и ее статистический смысл
§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
§ 218. Принцип причинности в квинтовой механике
§ 219. Движение свободной частицы
§ 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
§ 222. Линейный гармонический осциллятор в квантовой механике
Глава 29 Элементы современной физики атомов и молекул
§ 223. Атом водорода в квантовой механике
§ 224. 1s-Состояние электрона в атоме водорода
§ 225. Спин электрона. Спиновое квантовое число
§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
§ 227. Принцип Паули. Распределение электронов в атоме по состояниям
§ 228. Периодическая система элементов Менделеева
§ 230. Молекулы: химические связи, понятие об энергетических уровнях
§ 231. Молекулярные спектры. Комбинационное рассеяние света
§ 232. Поглощение. Спонтанное и вынужденное излучения
§ 233. Оптические квантовые генераторы (лазеры)
Глава 30 Элементы квантовой статистики
§ 234. Квантовая статистика. Фазовое пространство. Функция распределения
§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
§ 236. Вырожденный электронный газ в металлах
§ 237. Понятие о квантовой теории теплоемкости. Фононы
§ 238. Выводы квантовой теории электропроводности металлов
§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона
Глава 31 Элементы физики твердого тела
§ 240. Понятие о зонной теории твердых тел
§ 241. Металлы, диэлектрики и полупроводники по зонной теории
§ 242. Собственная проводимость полупроводников
§ 243. Примесная проводимость полупроводников
§ 244. Фотопроводимость полупроводников
§ 245. Люминесценция твердых тел
§ 246. Контакт двух металлов по зонной теории
§ 247. Термоэлектрические явления и их применение
§ 248. Выпрямление на контакте металл — полупроводник
§ 249. Контакт электронного и дырочного полупроводников (p-n-переход)
§ 250. Полупроводниковые диоды и триоды (транзисторы)
7 ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Глава 32 Элементы физики атомного ядра
§ 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
§ 252. Дефект массы и энергия связи ядра
§ 253. Спин ядра и его магнитный момент
§ 254. Ядерные силы. Модели ядра
§ 255. Радиоактивное излучение и его виды
§ 256. Закон радиоактивного распада. Правила смещения
§ 257. Закономерности -распада
§ 259. Гамма-излучение и его свойства
§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра*)
§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
§ 262. Ядерные реакции и их основные типы
§ 263. Позитрон. +-Распад. Электронный захват
§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
§ 267. Понятие о ядерной энергетике
§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
Глава 33 Элементы физики элементарных частиц
§ 272. Типы взаимодействий элементарных частиц
§ 274. Гипероны. Странность и четность элементарных частиц
При рассмотрении реальных газов — газов, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они проявляются на расстояниях 10–9 м и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.
В XX в., по мере развития представлений о строении атома и квантовой механики, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. На рис. 88, а приведена качественная зависимость сил межмолекулярного взаимодействия от расстояния r между молекулами, где Fо и Fп — соответственно силы отталкивания и притяжения, a F — их результирующая. Силы отталкивания считаются положительными, а силы взаимного притяжения — отрицательными.
На расстоянии r=r0 результирующая сила F = 0, т.е. силы притяжения и отталкивания уравновешивают друг друга. Таким образом, расстояние r0 соответствует равновесному расстоянию между молекулами, на котором бы они находились в отсутствие теплового движения. При r < r0 преобладают силы отталкивания (F>0), при r > r0 — силы притяжения (F<0). На расстояниях r > 10–9 м межмолекулярные силы взаимодействия практически отсутствуют (F0).
Элементарная работа A силы F при увеличении расстояния между молекулами на dr совершается за счет уменьшения взаимной потенциальной энергии молекул, т. е.
(60.1)
Из анализа качественной зависимости потенциальной энергии взаимодействия молекул от расстояния между ними (рис. 88, б) следует, что если молекулы находятся друг от друга на расстоянии, на котором межмолекулярные силы взаимодействия не действуют (r), то П=0. При постепенном сближении молекул между, ними появляются силы притяжения (F<0), которые совершают положительную работу (A=Fdr > 0). Тогда, согласно (60.1), потенциальная энергия взаимодействия уменьшается, достигая минимума при r= r0. При r < r0 с уменьшением r силы отталкивания (F>0) резко возрастают и совершаемая против них работа отрицательна (A=Fdr<0). Потенциальная энергия начинает тоже резко возрастать и становится положительной. Из данной потенциальной кривой следует, что система из двух взаимодействующих молекул в состоянии устойчивого равновесия (r = r0) обладает минимальной потенциальной энергией.
Критерием различных агрегатных состояний вещества является соотношение между величинами Пmin и kT. Пmin — наименьшая потенциальная энергия взаимодействия молекул — определяет работу, которую нужно совершить против сил притяжения для того, чтобы разъединить молекулы, находящиеся в равновесии (r= r0); kT определяет удвоенную среднюю энергию, приходящуюся на одну степень свободы хаотического (теплового) движения молекул.
Если Пmin<<kT, то вещество находится в газообразном состоянии, так как интенсивное тепловое движение молекул препятствует соединению молекул, сблизившихся до расстояния r0, т. е. вероятность образования агрегатов из молекул достаточно мала. Если Пmin>>kT, то вещество находится в твердом состоянии, так как молекулы, притягиваясь друг к другу, не могут удалиться на значительные расстояния и колеблются около положений равновесия, определяемого расстоянием r0. Если ПminkT, то вещество находится в жидком состоянии, так как в результате теплового движения молекулы перемещаются в пространстве, обмениваясь местами, но не расходясь на расстояние, превышающее r0.
Таким образом, любое вещество в зависимости от температуры может находиться в газообразном, жидком или твердом агрегатном состоянии, причем температура перехода из одного агрегатного состояния в другое зависит от значения Пmin, для данного вещества. Например, у инертных газов Пmin мало, а у металлов велико, поэтому при обычных (комнатных) температурах они находятся соответственно в газообразном и твердом состояниях.
§ 61. Уравнение Ван-дер-Ваальса
Как уже указывалось в § 60, для реальных газов необходимо учитывать размеры молекул и их взаимодействие друг с другом, поэтому модель идеального газа и уравнение Клапейрона — Менделеева (42.4) pVm=RT (для моля газа), описывающее идеальный газ, для реальных газов непригодны.
Учитывая собственный объем молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальс (1837—1923) вывел уравнение состояния реального газа. Ван-дер-Ваальсом в уравнение Клапейрона — Менделеева введены две поправки.
1. Учет собственного объема молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не Vm, а Vm — b, где b — объем, занимаемый самими молекулами.
Объем b равен учетверенному собственному объему молекул. Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы. Это означает, что для центров обеих молекул оказывается недоступным сферический объем радиуса d, т. е. объем, равный восьми объемам молекулы или учетверенному объему молекулы в расчете на одну молекулу.
2. Учет притяжения молекул. Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е.
(61.1)
где а — постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, Vm — молярный объем.
Вводя эти поправки, получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния реальных газов):
(61.2)
Для произвольного количества вещества v газа (v=m/M) с учетом того, что V=vVm, уравнение Ван-дер-Ваальса примет вид
где поправки а и b — постоянные для каждого газа величины, определяемые опытным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состояний газа и решаются относительно а и b).
При выводе уравнения Ван-дер-Ваальса сделан целый ряд упрощений, поэтому оно также весьма приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.
Уравнение Ван-дер-Ваальса не единственное уравнение, описывающее реальные газы. Существуют и другие уравнения, некоторые из них даже точнее описывают реальные газы, но не рассматриваются из-за их сложности.
§ 62. Изотермы Ван-дер-Ваальса и их анализ
Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ваальса — кривые зависимости р от Vm при заданных Т, определяемые уравнением Ван-дер-Ваальса (61.2) для моля газа. Эти кривые (рассматриваются для четырех различных температур; рис. 89) имеют довольно своеобразный характер. При высоких температурах (T > Tк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При некоторой температуре Tк на изотерме имеется лишь одна точка перегиба К.
Эта изотерма называется критической, соответствующая ей температура Tк — критической температурой; точка перегиба К называется критической точкой; в этой точке касательная к ней параллельна оси абсцисс. Соответствующие этой точке объем Vк, и давление рк называются также критическими. Состояние с критическими параметрами (pк, Vк, Tк) называется критическим состоянием. При низких температурах (Т < Tк ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.
Для пояснения характера изотерм преобразуем уравнение Ван-дер-Ваальса (61.2) к виду
(62.1)
Уравнение (62.1) при заданных р и Т является уравнением третьей степени относительно Vm; следовательно, оно может иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь вещественные положительные корни. Поэтому первому случаю соответствуют изотермы при низких температурах (три значения объема газа V1, V2 и V3 отвечают (символ «m» для простоты опускаем) одному значению давления р1), второму случаю — изотермы при высоких температурах.
Рассматривая различные участки изотермы при T<Тк (рис. 90), видим, что на участках 1—3 и 5—7 при уменьшении объема Vm давление р возрастает, что естественно. На участке 3—5 сжатие вещества приводит к уменьшению давления; практика же показывает, что такие состояния в природе не осуществляются. Наличие участка 3—5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное изменение состояния и распад вещества на две фазы. Таким образом, истинная изотерма будет иметь вид ломаной линии 7—6—2—1. Часть 6–7 отвечает газообразному состоянию, а часть 2–1 — жидкому. В состояниях, соответствующих горизонтальному участку изотермы 6—2, наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном состоянии при температуре ниже критической называется паром, а пар, находящийся в равновесии со своей жидкостью, называется насыщенным.
Данные выводы, следующие из анализа уравнения Ван-дер-Ваальса, были подтверждены опытами ирландского ученого Т. Эндрюса (1813—1885), изучавшего изотермическое сжатие углекислого газа. Отличие экспериментальных (Эндрюс) и теоретических (Ван-дер-Ваальс) изотерм заключается в том, что превращению газа в жидкость в первом случае соответствуют горизонтальные участки, а во втором — волнообразные.
Для нахождения критических параметров подставим их значения в уравнение (62.1) в запишем
(62.2)
(символ «m» для простоты опускаем). Поскольку в критической точке все три корня совпадают и равны Vк уравнение приводится к виду
(62.3)
или
Tax как уравнения (62.2) и (62.3) тождественны, то в них должны быть равны и коэффициенты при неизвестных соответствующих степеней. Поэтому можно записать
(62.4)
Решая полученные уравнения, найдем
Если через крайние точки горизонтальных участков семейства изотерм провести линию, то получится колоколообразная кривая (рис. 91), ограничивающая область двухфазных состояний вещества. Эта кривая и критическая изотерма делят диаграмму р,Vm под изотермой на три области: под колоколообразной кривой располагается область двухфазных состояний (жидкость и насыщенный пар), слева от нее находится область жидкого состояния, а справа — область пара. Пар отличается от остальных газообразных состояний тем, что при изотермическом сжатии претерпевает процесс сжижения. Газ же при температуре выше критической не может быть превращен в жидкость ни при каком давлении.
Сравнивая изотерму Ван-дер-Ваальса с изотермой Эндрюса (верхняя кривая на рис. 92), видим, что последняя имеет прямолинейный участок 2—6, соответствующий двухфазным состояниям вещества. Правда, при некоторых условиях могут быть реализованы состояния, изображаемые участками ван-дер-ваальсовой изотермы 5—6 и 2—3. Эти неустойчивые состояния называются метастабильными. Участок 2—3 изображает перегретую жидкость, 5—6 — пересыщенный пар. Обе фазы ограниченно устойчивы.
При достаточно низких температурах изотерма пересекает ось Vm, переходя в область отрицательных давлений (нижняя кривая на рис. 92). Вещество под отрицательным давлением находится в состоянии растяжения. При некоторых условиях такие состояния также реализуются. Участок 8—9 на нижней изотерме соответствует перегретой жидкости, участок 9—10 — растянутой жидкости.
§ 63. Внутренняя энергия реального газа
Внутренняя энергия реального газа складывается из кинетической энергии теплового движения его молекул (определяет внутреннюю энергию идеального газа, равную СVТ; см. § 53) и потенциальной энергии межмолекулярного взаимодействия. Потенциальная энергия реального газа обусловлена только силами притяжения между молекулами. Наличие сил притяжения приводит к возникновению внутреннего давления на газ (см. (61.1)):
Работа, которая затрачивается для преодоления сил притяжения, действующих между молекулами газа, как известно из механики, идет на увеличение потенциальной энергии системы, т. е. или откуда
(постоянная интегрирования принята равной нулю). Знак минус означает, что молекулярные силы, создающие внутреннее давление р', являются силами притяжения (см. § 60). Учитывая оба слагаемых, получим, что внутренняя энергия моля реального газа
(63.1)
растет с повышением температуры и увеличением объема.
Если газ расширяется без теплообмена с окружающей средой (адиабатический процесс, т. е. Q=0) и не совершает внешней работы (расширение газа в вакуум, т. е. А=0), то на основании первого начала термодинамики (Q = (U2—U1)+ A) Получим, что
(63.2)
Следовательно, при адиабатическом расширении без совершения внешней работы внутренняя энергия газа не изменяется.
Равенство (63.2) формально справедливо как для идеального, так и для реального газов, но физический смысл его для обоих случаев совершенно различен. Для идеального газа равенство U1=U2 означает равенство температур (T1=T2), т. е. при адиабатическом расширении идеального газа в вакуум его температура не изменяется. Для реального газа из равенства (63.2), учитывая, что для моля газа
(63.3)
получаем
Так как V2> V1, то Т1 > Т2, т. е. реальный газ при адиабатическом расширении в вакуум охлаждается. При адиабатическом сжатии в вакуум реальный газ нагревается.
§ 64. Эффект Джоуля — Томсона
Если идеальный газ адиабатически расширяется и совершает при этом работу, то он охлаждается, так как работа в данном случае совершается за счет его внутренней энергии (см. § 55). Подобный процесс, но с реальным газом — адиабатическое расширение реального газа с совершением внешними силами положительной работы—осуществили английские физики Дж. Джоуль (1818—1889) и У. Томсон (лорд Кельвин, 1824—1907).
Рассмотрим эффект Джоуля — Томсона. На рис. 93 представлена схема их опыта. В теплоизолированной трубке с пористой перегородкой находятся два поршня, которые могут перемешаться без трения. Пусть сначала слева от перегородки газ под поршнем 1 находится под давлением р1, занимает объем V1 при температуре Т1, а справа газ отсутствует (поршень 2 придвинут к перегородке). После прохождения газа через пористую перегородку в правой части газ характеризуется параметрами р2, V2, T2. Давления p1 и p2 поддерживаются постоянными (p1>p2).
Так как расширение газа происходит без теплообмена с окружающей средой (адиабатически), то на основании первого начала термодинамики
(64.1)
Внешняя работа, совершаемая газом, состоит из положительной работы при движении поршня 2 (А2=р2V2) и отрицательной при движении поршня 1 (A1=p1V1), т. е. A=A2—A1. Подставляя выражения для работ в формулу (64.1), получаем
(64.2)
Таким образом, в опыте Джоуля — Томсона сохраняется (остается неизменной) величина U+pV. Она является функцией состояния и называется энтальпией.
Ради простоты рассмотрим 1 моль газа. Подставляя в формулу (64.2) выражение (63.3) и рассчитанные из уравнения Ван-дер-Ваальса (61.2) значения p1V2 и р2V2 (символ «m» опять опускаем) и производя элементарные преобразования, получаем
(64.3)
Из выражения (64.3) следует, что знак разности (T2—T1) зависит от того, какая из поправок Ван-дер-Ваальса играет бóльшую роль. Проанализируем данное выражение, сделав допущение, что p2<<p1 и V2>>V1: