Файл: Учебник Трофимова Курс физики.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.07.2020

Просмотров: 34564

Скачиваний: 521

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Предисловие

Введение

Предмет физики и ее связь с другими науками

Единицы физических величин

1 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Глава 1 Элементы кинематики

§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения

§ 2. Скорость

§ 3. Ускорение и его составляющие

§ 4. Угловая скорость и угловое ускорение

Глава 2 Динамика материальной точки и поступательного движения твердого тела

§ 5. Первый закон Ньютона. Масса. Сила

§ 6. Второй закон Ньютона

§ 7. Третий закон Ньютона

§ 8. Силы трения

§ 9. Закон сохранения импульса. Центр масс

§ 10. Уравнение движения тела переменной массы

Глава 3 Работа и энергия

§11. Энергия, работа, мощность

§ 12. Кинетическая и потенциальная энергии

§ 13. Закон сохранения энергии

§ 14. Графическом представление энергии

§ 15. Удар абсолютно упругих и неупругих тел

Глава 4 Механика твердого тела

§ 16. Момент инерции

§ 17. Кинетическая энергия вращения

§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела

§ 19. Момент импульса и закон то сохранения

§ 20. Свободные оси. Гироскоп

§ 21. Деформации твердого тела

Глава 5 Тяготение. Элементы теории поля

§ 22. Законы Кеплера. Закон всемирного тяготения

§ 23. Сила тяжести и вес. Невесомость

§ 24. Поле тяготения и то напряженность

§ 25. Работа в поле тяготения. Потенциал поля тяготения

§ 26. Космические скорости

§ 27. Неинерциальные системы отсчета. Силы инерции

Глава 6 Элементы механики жидкостей

§ 28. Давление в жидкости и газе

§ 29. Уравнение неразрывности

§ 30. Уравнение Бернулли и следствия из него

§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей

§ 32. Методы определения вязкости

§ 33. Движение тел в жидкостях и газах

Глава 7 Элементы специальной (частной) теории относительности

§ 34. Преобразования Галилея. Механический принцип относительности

§ 35. Постулаты специальной (частной) теории относительности

§ 36. Преобразования Лоренца

§ 37. Следствия из преобразований Лоренца

§ 38. Интервал между событиями

§ 39. Основной закон релятивистской динамики материальной точки

§ 40. Закон взаимосвязи массы и энергии

2 ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ

Глава 8 Молекулярно-кинетическая теория идеальных газов

§ 41. Статистический и термодинамический методы. Опытные законы идеального газа

§ 42. Уравнение Клапейрона — Менделеева

§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов

§ 44. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения

§ 45. Барометрическая формула. Распределение Больцмана

§ 46. Среднее число столкновений и средняя длина свободного пробега молекул

§ 47. Опытное обоснование молекулярно-кинетической теории

§ 48. Явления переноса в термодинамически неравновесных системах

§ 48. Вакуум и методы его получения. Свойства ультраразреженных газов

Глава 9 Основы термодинамики

§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул

§ 51. Первое начало термодинамики

§ 52. Работа газа при изменении его объема

§ 53. Теплоемкость

§ 54. Применение первого начала термодинамики к изопроцессам

§ 55. Адиабатический процесс. Политропный процесс

§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы

§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

§ 58. Второе начало термодинамики

§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа

Задачи

Глава 10 Реальные газы, жидкости и твердые тела

§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия

§ 61. Уравнение Ван-дер-Ваальса

§ 62. Изотермы Ван-дер-Ваальса и их анализ

§ 63. Внутренняя энергия реального газа

§ 64. Эффект Джоуля — Томсона

§ 65. Сжижение газов

§ 66. Свойства жидкостей. Поверхностное натяжение

§ 67. Смачивание

§ 68. Давление под искривленной поверхностью жидкости

§ 69. Капиллярные явления

§ 70. Твердые тела. Моно- и поликристаллы

§ 71. Типы кристаллических твердых тел

§ 72. Дефекты в кристаллах

§ 73. Теплоемкость твердых тел

§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела

§ 75. Фазовые переходы I и П рода

§ 76. Диаграмма состояния. Тройная точка

Задачи

3 ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ

Глава 11 Электростатика

§ 77. Закон сохранения электрического заряда

§ 78. Закон Кулона

§ 79. Электростатическое поле. Напряженность электростатического поля

§ 80. Принцип суперпозиции электростатических полей. Поле диполя

§ 81. Теорема Гаусса для электростатического поля в вакууме

§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме

§ 83. Циркуляция вектора напряженности электростатического поля

§ 84. Потенциал электростатического поля

§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности

§ 86. Вычисление разности потенциалов по напряженности поля

§ 87. Типы диэлектриков. Поляризация диэлектриков

§ 88. Поляризованность. Напряженность поля в диэлектрике

§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике

§ 90. Условия на границе раздела двух диэлектрических сред

§ 91. Сегнетоэлектрики

§ 92. Проводники в электростатическом поле

§ 93. Электрическая емкость уединенного проводника

§ 94. Конденсаторы

§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля

Задачи

Глава 12 Постоянный электрический ток

§ 96. Электрический ток, сила и плотность тока

§ 97. Сторонние силы. Электродвижущая сила и напряжение

§ 98. Закон Ома. Сопротивление проводников

§ 99. Работа и мощность тока. Закон Джоуля — Ленца

§ 100. Закон Ома для неоднородного участка цепи

§ 101. Правила Кирхгофа для разветвленных цепей

Задачи

Глава 13 Электрические токи в металлах, вакууме и газах

§ 102. Элементарная классическая теория электропроводности металлов

§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов

§ 104. Работа выхода электронов из металла

§ 105. Эмиссионные явления и их применение

§ 106. Ионизация газов. Несамостоятельный газовый разряд

§ 107. Самостоятельный газовый разряд и его типы

§ 108. Плазма и ее свойства

Задачи

Глава 14 Магнитное поле

§ 109. Магнитное поле и его характеристики

§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля

§ 111. Закон Ампера. Взаимодействие параллельных токов

§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля

§ 113. Магнитное поле движущегося заряда

§ 114. Действие магнитного поля на движущийся заряд

§ 115. Движение заряженных частиц в магнитном поле

§ 116. Ускорители заряженных частиц

§ 117. Эффект Холла

§ 118. Циркуляция вектора В магнитного поля в вакууме

§ 119. Магнитные поля соленоида и тороида

§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля В

§ 121. Работа по перемещению проводника и контура с током в магнитном поле

Задачи

Глава 15 Электромагнитная индукция

§122. Явление электромагнитной индукции (опыты Фарадея)

§ 123. Закон Фарадея и его вывод из закона сохранения энергии

§ 124. Вращение рамки в магнитном поле

§ 125. Вихревые токи (токи Фуко)

§ 126. Индуктивность контура. Самоиндукция

§ 127. Токи при размыкании и замыкании цепи

§ 128. Взаимная индукция

§ 129. Трансформаторы

§ 130. Энергия магнитного поля

Глава 16 Магнитные свойства вещества

§ 131. Магнитные моменты электронов и атомов

§ 132. Диа- и парамагнетизм

§ 133. Намагниченность. Магнитное поле в веществе

§ 134. Условия на границе раздела двух магнетиков

§ 135. Ферромагнетики и их свойства

§ 136. Природа ферромагнетизма

Глава 17 Основы теории Максвелла для электромагнитного поля

§ 137. Вихревое электрическое поле

§ 138. Ток смещения

§ 139. Уравнения Максвелла для электромагнитного поля

4 КОЛЕБАНИЯ И ВОЛНЫ

Глава 18 Механические и электромагнитные колебания

§ 140. Гармонические колебания и их характеристики

§ 141. Механические гармонические колебания

§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники

§ 143. Свободные гармонические колебания в колебательном контуре

§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

§ 145. Сложение взаимно перпендикулярных колебаний

§ 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания

§ 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение

§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс

§ 148. Переменный ток

§ 150. Резонанс напряжений

§ 151. Резонанс токов

§ 152. Мощность, выделяемая в цепи переменного тока

Глава 19 Упругие волны

§ 153. Волновые процессы. Продольные и поперечные волны

§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение

§ 155. Принцип суперпозиции. Групповая скорость

§ 156. Интерференция волн

§ 157. Стоячие волны

§ 158. Звуковые волны

S 159. Эффект Доплере в акустике

§ 160. Ультразвук и его применение

Глава 20 Электромагнитные волны

§ 161. Экспериментальное получение электромагнитных волн

§ 162. Дифференциальное уравнение электромагнитной волны

§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля

§ 164. Излучение диполя. Применение электромагнитных волн

5 ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ

Глава 21 Элементы геометрической и электронной оптики

§ 165. Основные законы оптики. Полное отражение

§ 166. Тонкие линзы. Изображение предметов с помощью линз

§ 187. Аберрации (погрешности) оптических систем

§ 168. Основные фотометрические величины и их единицы

§ 189. Элементы электронной оптики

Глава 22 Интерференция света

§ 170. Развитие представлений о природе света

§ 171. Когерентность и монохроматичность световых волн

§ 172. Интерференция света

§ 173. Методы наблюдения интерференции света

§ 174. Интерференция света в тонких пленках

§ 175. Применение интерференции света

Глава 23 Дифракция света

§ 176. Принцип Гюйгенса — Френеля

§ 177. Метод зон Френеля. Прямолинейное распространение света

§ 178. Дифракция Френеля на круглом отверстии и диске

§ 178. Дифракция Фраунгофера на одной щели

§ 180. Дифракция Фраунгофера на дифракционной решетке

§ 181. Пространственная решетка. Рассеяние света

§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов

§ 183. Разрешающая способность оптических приборов

§ 184. Понятие о голографии

Глава 24 Взаимодействие электромагнитных волн с веществом

§ 185. Дисперсия света

§ 186. Электронная теория дисперсии светя

§ 187. Поглощение (абсорбция) света

§ 188. Эффект Доплера

§ 189. Излучение Вавилова — Черенкова

Глава 25 Поляризация света

§ 190. Естественный и поляризованный свет

§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков

§ 192. Двойное лучепреломление

§ 193. Поляризационные призмы и поляроиды

§ 194. Анализ поляризованного света

§ 195. Искусственная оптическая анизотропия

§ 196. Вращение плоскости поляризации

Глава 26 Квантовая природа излучения

§ 197. Тепловое излучение и его характеристики

§ 188. Закон Кирхгофа

§ 199. Законы Стефана — Больцмана и смещения Вина

§ 200. Формулы Рэлея — Джинса и Планка

§ 201. Оптическая пирометрия. Тепловые источники света

§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта

§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света

§ 204. Применение фотоэффекта

§ 205. Масса и импульс фотона. Давление света

§ 206. Эффект Комптона и его элементарная теория

§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения

6 ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ

Глава 27 Теория атома водорода по Бору

§ 208. Модели атома Томсона и Резерфорда

§ 209. Линейчатый спектр атома водорода

§ 210. Постулаты Бора

§ 211. Опыты Франка и Герца

§ 212. Спектр атома водорода по Бору

Глава 28 Элементы квантовой механики

§ 213. Корпускулярно-волновой дуализм свойств вещества

§ 214. Некоторые свойства волн да Бройля

§ 215. Соотношение неопределенностей

§ 216. Волновая функция и ее статистический смысл

§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

§ 218. Принцип причинности в квинтовой механике

§ 219. Движение свободной частицы

§ 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»

§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект

§ 222. Линейный гармонический осциллятор в квантовой механике

Глава 29 Элементы современной физики атомов и молекул

§ 223. Атом водорода в квантовой механике

§ 224. 1s-Состояние электрона в атоме водорода

§ 225. Спин электрона. Спиновое квантовое число

§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны

§ 227. Принцип Паули. Распределение электронов в атоме по состояниям

§ 228. Периодическая система элементов Менделеева

§ 229. Рентгеновские спектры

§ 230. Молекулы: химические связи, понятие об энергетических уровнях

§ 231. Молекулярные спектры. Комбинационное рассеяние света

§ 232. Поглощение. Спонтанное и вынужденное излучения

§ 233. Оптические квантовые генераторы (лазеры)

Глава 30 Элементы квантовой статистики

§ 234. Квантовая статистика. Фазовое пространство. Функция распределения

§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака

§ 236. Вырожденный электронный газ в металлах

§ 237. Понятие о квантовой теории теплоемкости. Фононы

§ 238. Выводы квантовой теории электропроводности металлов

§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона

Глава 31 Элементы физики твердого тела

§ 240. Понятие о зонной теории твердых тел

§ 241. Металлы, диэлектрики и полупроводники по зонной теории

§ 242. Собственная проводимость полупроводников

§ 243. Примесная проводимость полупроводников

§ 244. Фотопроводимость полупроводников

§ 245. Люминесценция твердых тел

§ 246. Контакт двух металлов по зонной теории

§ 247. Термоэлектрические явления и их применение

§ 248. Выпрямление на контакте металл — полупроводник

§ 249. Контакт электронного и дырочного полупроводников (p-n-переход)

§ 250. Полупроводниковые диоды и триоды (транзисторы)

7 ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Глава 32 Элементы физики атомного ядра

§ 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа

§ 252. Дефект массы и энергия связи ядра

§ 253. Спин ядра и его магнитный момент

§ 254. Ядерные силы. Модели ядра

§ 255. Радиоактивное излучение и его виды

§ 256. Закон радиоактивного распада. Правила смещения

§ 257. Закономерности -распада

§ 258. –-Распад. Нейтрино

§ 259. Гамма-излучение и его свойства

§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра*)

§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц

§ 262. Ядерные реакции и их основные типы

§ 263. Позитрон. +-Распад. Электронный захват

§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов

§ 265. Реакция деления ядра

§ 266. Цепная реакция деления

§ 267. Понятие о ядерной энергетике

§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций

Глава 33 Элементы физики элементарных частиц

§ 269. Космическое излучение

§ 270. Мюоны и их свойства

§ 271. Мезоны и их свойства

§ 272. Типы взаимодействий элементарных частиц

§ 273. Частицы и античастицы

§ 274. Гипероны. Странность и четность элементарных частиц

§ 275. Классификация элементарных частиц. Кварки

ЗАКЛЮЧЕНИЕ

При рассмотрении реальных газов — газов, свойства которых зависят от взаимо­действия молекул, надо учитывать силы межмолекулярного взаимодействия. Они прояв­ляются на расстояниях 10–9 м и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.

В XX в., по мере развития представлений о строении атома и квантовой механики, было выяснено, что между молекулами вещества одновременно действуют силы притя­жения и силы отталкивания. На рис. 88, а приведена качественная зависимость сил межмолекулярного взаимодействия от расстояния r между молекулами, где Fо и Fп — соответственно силы отталкивания и притяжения, a F их результирующая. Силы отталкивания считаются положительными, а силы взаимного притяже­ния — отрицательными.

На расстоянии r=r0 результирующая сила F = 0, т.е. силы притяжения и оттал­кивания уравновешивают друг друга. Таким образом, расстояние r0 соответствует равновесному расстоянию между молекулами, на котором бы они находились в отсут­ствие теплового движения. При r < r0 преобладают силы отталкивания (F>0), при r > r0 — силы притяжения (F<0). На расстояниях r > 10–9 м межмолекулярные силы взаимодействия практически отсутствуют (F0).

Элементарная работа A силы F при увеличении расстояния между молекулами на dr совершается за счет уменьшения взаимной потенциальной энергии молекул, т. е.

(60.1)

Из анализа качественной зависимости потенциальной энергии взаимодействия молекул от расстояния между ними (рис. 88, б) следует, что если молекулы находятся друг от друга на расстоянии, на котором межмолекулярные силы взаимодействия не действу­ют (r), то П=0. При постепенном сближении молекул между, ними появляются силы притяжения (F<0), которые совершают положительную работу (A=Fdr > 0). Тогда, согласно (60.1), потенциальная энергия взаимодействия уменьшается, достигая минимума при r= r0. При r < r0 с уменьшением r силы отталкивания (F>0) резко возрастают и совершаемая против них работа отрицательна (A=Fdr<0). Потенци­альная энергия начинает тоже резко возрастать и становится положительной. Из данной потенциальной кривой следует, что система из двух взаимодействующих молекул в состоянии устойчивого равновесия (r = r0) обладает минимальной потенци­альной энергией.

Критерием различных агрегатных состояний вещества является соотношение меж­ду величинами Пmin и kT. Пmin — наименьшая потенциальная энергия взаимодействия молекул — определяет работу, которую нужно совершить против сил притяжения для того, чтобы разъединить молекулы, находящиеся в равновесии (r= r0); kT определяет удвоенную среднюю энергию, приходящуюся на одну степень свободы хаотического (теплового) движения молекул.

Если Пmin<<kT, то вещество находится в газообразном состоянии, так как интенсив­ное тепловое движение молекул препятствует соединению молекул, сблизившихся до расстояния r0, т. е. вероятность образования агрегатов из молекул достаточно мала. Если Пmin>>kT, то вещество находится в твердом состоянии, так как молекулы, притягиваясь друг к другу, не могут удалиться на значительные расстояния и колеб­лются около положений равновесия, определяемого расстоянием r0. Если ПminkT, то вещество находится в жидком состоянии, так как в результате теплового движения молекулы перемещаются в пространстве, обмениваясь местами, но не расходясь на расстояние, превышающее r0.


Таким образом, любое вещество в зависимости от температуры может находиться в газообразном, жидком или твердом агрегатном состоянии, причем температура перехода из одного агрегатного состояния в другое зависит от значения Пmin, для данного вещества. Например, у инертных газов Пmin мало, а у металлов велико, поэтому при обычных (комнатных) температурах они находятся соответственно в газо­образном и твердом состояниях.

§ 61. Уравнение Ван-дер-Ваальса

Как уже указывалось в § 60, для реальных газов необходимо учитывать размеры молекул и их взаимодействие друг с другом, поэтому модель идеального газа и уравнение Клапейрона — Менделеева (42.4) pVm=RT (для моля газа), описывающее идеаль­ный газ, для реальных газов непригодны.

Учитывая собственный объем молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальс (1837—1923) вывел уравнение состояния реаль­ного газа. Ван-дер-Ваальсом в уравнение Клапейрона — Менделеева введены две поправки.

1. Учет собственного объема молекул. Наличие сил отталкивания, которые проти­водействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не Vm, а Vmb, где b объем, занимаемый самими молекулами.

Объем b равен учетверенному собственному объему молекул. Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы. Это означает, что для центров обеих молекул оказывается недоступным сферический объем радиуса d, т. е. объем, равный восьми объемам молекулы или учетверенному объему молекулы в рас­чете на одну молекулу.

2. Учет притяжения молекул. Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислени­ям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату моляр­ного объема, т. е.

(61.1)

где а — постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного при­тяжения, Vm молярный объем.

Вводя эти поправки, получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния реальных газов):

(61.2)

Для произвольного количества вещества v газа (v=m/M) с учетом того, что V=vVm, уравнение Ван-дер-Ваальса примет вид

где поправки а и b постоянные для каждого газа величины, определяемые опытным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состоя­ний газа и решаются относительно а и b).

При выводе уравнения Ван-дер-Ваальса сделан целый ряд упрощений, поэтому оно также весьма приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.

Уравнение Ван-дер-Ваальса не единственное уравнение, описывающее реальные газы. Существу­ют и другие уравнения, некоторые из них даже точнее описывают реальные газы, но не рассматрива­ются из-за их сложности.


§ 62. Изотермы Ван-дер-Ваальса и их анализ

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ваальса — кривые зависимости р от Vm при заданных Т, определяемые уравнением Ван-дер-Ваальса (61.2) для моля газа. Эти кривые (рассматриваются для четырех различных температур; рис. 89) имеют довольно своеобразный характер. При высоких температурах (T > Tк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кри­вой. При некоторой температуре Tк на изотерме имеется лишь одна точка перегиба К.

Эта изотерма называется критической, соответствующая ей температура Tк — крити­ческой температурой; точка перегиба К называется критической точкой; в этой точке касательная к ней параллельна оси абсцисс. Соответствующие этой точке объем Vк, и давление рк называются также критическими. Состояние с критическими парамет­рами (pк, Vк, Tк) называется критическим состоянием. При низких температурах (Т < Tк ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

Для пояснения характера изотерм преобразуем уравнение Ван-дер-Ваальса (61.2) к виду

(62.1)

Уравнение (62.1) при заданных р и Т является уравнением третьей степени от­носительно Vm; следовательно, оно может иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь веществен­ные положительные корни. Поэтому первому случаю соответствуют изотермы при низких температурах (три значения объема газа V1, V2 и V3 отвечают (символ «m» для простоты опускаем) одному значению давления р1), второму случаю — изотермы при высоких температурах.

Рассматривая различные участки изотермы при T<Тк (рис. 90), видим, что на участках 13 и 57 при уменьшении объема Vm давление р возрастает, что естествен­но. На участке 3—5 сжатие вещества приводит к уменьшению давления; практика же показывает, что такие состояния в природе не осуществляются. Наличие участка 3—5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообраз­ное изменение состояния и распад вещества на две фазы. Таким образом, истинная изотерма будет иметь вид ломаной линии 76—2—1. Часть 6–7 отвечает газообраз­ному состоянию, а часть 21 — жидкому. В состояниях, соответствующих горизон­тальному участку изотермы 6—2, наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном состоянии при температуре ниже критической называется паром, а пар, находящийся в равновесии со своей жидкостью, называется насыщенным.

Данные выводы, следующие из анализа уравнения Ван-дер-Ваальса, были под­тверждены опытами ирландского ученого Т. Эндрюса (1813—1885), изучавшего изо­термическое сжатие углекислого газа. Отличие экспериментальных (Эндрюс) и те­оретических (Ван-дер-Ваальс) изотерм заключается в том, что превращению газа в жидкость в первом случае соответствуют горизонтальные участки, а во вто­ром — волнообразные.


Для нахождения критических параметров подставим их значения в уравнение (62.1) в запишем

(62.2)

(символ «m» для простоты опускаем). Поскольку в критической точке все три корня совпадают и равны Vк уравнение приводится к виду

(62.3)

или

Tax как уравнения (62.2) и (62.3) тождественны, то в них должны быть равны и коэф­фициенты при неизвестных соответствующих степеней. Поэтому можно записать

(62.4)

Решая полученные уравнения, найдем

Если через крайние точки горизонтальных участков семейства изотерм провести линию, то получится колоколообразная кривая (рис. 91), ограничивающая область двухфазных состояний вещества. Эта кривая и критическая изотерма делят диаграмму р,Vm под изотермой на три области: под колоколообразной кривой располагается область двухфазных состояний (жидкость и насыщенный пар), слева от нее находится область жидкого состояния, а справа — область пара. Пар отличается от остальных газообразных состояний тем, что при изотермическом сжатии претерпевает процесс сжижения. Газ же при температуре выше критической не может быть превращен в жидкость ни при каком давлении.

Сравнивая изотерму Ван-дер-Ваальса с изотермой Эндрюса (верхняя кривая на рис. 92), видим, что последняя имеет прямолинейный участок 26, соответствующий двухфазным состояниям вещества. Правда, при некоторых условиях могут быть ре­ализованы состояния, изображаемые участками ван-дер-ваальсовой изотермы 5—6 и 23. Эти неустойчивые состояния называются метастабильными. Участок 2—3 изображает перегретую жидкость, 5—6 пересыщенный пар. Обе фазы ограниченно устойчивы.

При достаточно низких температурах изотерма пересекает ось Vm, переходя в об­ласть отрицательных давлений (нижняя кривая на рис. 92). Вещество под отрицатель­ным давлением находится в состоянии растяжения. При некоторых условиях такие состояния также реализуются. Участок 8—9 на нижней изотерме соответствует перегре­той жидкости, участок 9—10 — растянутой жидкости.

§ 63. Внутренняя энергия реального газа

Внутренняя энергия реального газа складывается из кинетической энергии теплового движения его молекул (определяет внутреннюю энергию идеального газа, равную СVТ; см. § 53) и потенциальной энергии межмолекулярного взаимодействия. Потенциальная энергия реального газа обусловлена только силами притяжения между молекулами. Наличие сил притяжения приводит к возникновению внутреннего давления на газ (см. (61.1)):

Работа, которая затрачивается для преодоления сил притяжения, действующих между молекулами газа, как известно из механики, идет на увеличение потенциальной энергии системы, т. е. или откуда

(постоянная интегрирования принята равной нулю). Знак минус означает, что молеку­лярные силы, создающие внутреннее давление р', являются силами притяжения (см. § 60). Учитывая оба слагаемых, получим, что внутренняя энергия моля реального газа


(63.1)

растет с повышением температуры и увеличением объема.

Если газ расширяется без теплообмена с окружающей средой (адиабатический процесс, т. е. Q=0) и не совершает внешней работы (расширение газа в вакуум, т. е. А=0), то на основании первого начала термодинамики (Q = (U2—U1)+ A) Получим, что

(63.2)

Следовательно, при адиабатическом расширении без совершения внешней работы внутренняя энергия газа не изменяется.

Равенство (63.2) формально справедливо как для идеального, так и для реального газов, но физический смысл его для обоих случаев совершенно различен. Для идеального газа равенство U1=U2 означает равенство температур (T1=T2), т. е. при ади­абатическом расширении идеального газа в вакуум его температура не изменяется. Для реального газа из равенства (63.2), учитывая, что для моля газа

(63.3)

получаем

Так как V2> V1, то Т1 > Т2, т. е. реальный газ при адиабатическом расширении в вакуум охлаждается. При адиабатическом сжатии в вакуум реальный газ нагревается.

§ 64. Эффект Джоуля — Томсона

Если идеальный газ адиабатически расширяется и совершает при этом работу, то он охлаждается, так как работа в данном случае совершается за счет его внутренней энергии (см. § 55). Подобный процесс, но с реальным газом — адиабатическое рас­ширение реального газа с совершением внешними силами положительной рабо­ты—осуществили английские физики Дж. Джоуль (1818—1889) и У. Томсон (лорд Кельвин, 1824—1907).

Рассмотрим эффект Джоуля — Томсона. На рис. 93 представлена схема их опыта. В теплоизолированной трубке с пористой перегородкой находятся два поршня, кото­рые могут перемешаться без трения. Пусть сначала слева от перегородки газ под поршнем 1 находится под давлением р1, занимает объем V1 при температуре Т1, а справа газ отсутствует (поршень 2 придвинут к перегородке). После прохождения газа через пористую перегородку в правой части газ характеризуется параметрами р2, V2, T2. Давления p1 и p2 поддерживаются постоянными (p1>p2).

Так как расширение газа происходит без теплообмена с окружающей средой (адиабатически), то на основании первого начала термодинамики

(64.1)

Внешняя работа, совершаемая газом, состоит из положительной работы при движении поршня 2 (А22V2) и отрицательной при движении поршня 1 (A1=p1V1), т. е. A=A2—A1. Подставляя выражения для работ в формулу (64.1), получаем

(64.2)

Таким образом, в опыте Джоуля — Томсона сохраняется (остается неизменной) вели­чина U+pV. Она является функцией состояния и называется энтальпией.

Ради простоты рассмотрим 1 моль газа. Подставляя в формулу (64.2) выражение (63.3) и рассчитанные из уравнения Ван-дер-Ваальса (61.2) значения p1V2 и р2V2 (символ «m» опять опускаем) и производя элементарные преобразования, получаем

(64.3)

Из выражения (64.3) следует, что знак разности (T2T1) зависит от того, какая из поправок Ван-дер-Ваальса играет бóльшую роль. Проанализируем данное выражение, сделав допущение, что p2<<p1 и V2>>V1: