ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.07.2020
Просмотров: 34455
Скачиваний: 521
СОДЕРЖАНИЕ
Предмет физики и ее связь с другими науками
§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
§ 3. Ускорение и его составляющие
§ 4. Угловая скорость и угловое ускорение
Глава 2 Динамика материальной точки и поступательного движения твердого тела
§ 5. Первый закон Ньютона. Масса. Сила
§ 9. Закон сохранения импульса. Центр масс
§ 10. Уравнение движения тела переменной массы
§11. Энергия, работа, мощность
§ 12. Кинетическая и потенциальная энергии
§ 13. Закон сохранения энергии
§ 14. Графическом представление энергии
§ 15. Удар абсолютно упругих и неупругих тел
Глава 4 Механика твердого тела
§ 17. Кинетическая энергия вращения
§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела
§ 19. Момент импульса и закон то сохранения
§ 21. Деформации твердого тела
Глава 5 Тяготение. Элементы теории поля
§ 22. Законы Кеплера. Закон всемирного тяготения
§ 23. Сила тяжести и вес. Невесомость
§ 24. Поле тяготения и то напряженность
§ 25. Работа в поле тяготения. Потенциал поля тяготения
§ 27. Неинерциальные системы отсчета. Силы инерции
Глава 6 Элементы механики жидкостей
§ 28. Давление в жидкости и газе
§ 30. Уравнение Бернулли и следствия из него
§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
§ 32. Методы определения вязкости
§ 33. Движение тел в жидкостях и газах
Глава 7 Элементы специальной (частной) теории относительности
§ 34. Преобразования Галилея. Механический принцип относительности
§ 35. Постулаты специальной (частной) теории относительности
§ 37. Следствия из преобразований Лоренца
§ 38. Интервал между событиями
§ 39. Основной закон релятивистской динамики материальной точки
§ 40. Закон взаимосвязи массы и энергии
2 ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ
Глава 8 Молекулярно-кинетическая теория идеальных газов
§ 41. Статистический и термодинамический методы. Опытные законы идеального газа
§ 42. Уравнение Клапейрона — Менделеева
§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов
§ 45. Барометрическая формула. Распределение Больцмана
§ 46. Среднее число столкновений и средняя длина свободного пробега молекул
§ 47. Опытное обоснование молекулярно-кинетической теории
§ 48. Явления переноса в термодинамически неравновесных системах
§ 48. Вакуум и методы его получения. Свойства ультраразреженных газов
§ 51. Первое начало термодинамики
§ 52. Работа газа при изменении его объема
§ 54. Применение первого начала термодинамики к изопроцессам
§ 55. Адиабатический процесс. Политропный процесс
§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы
§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
§ 58. Второе начало термодинамики
§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа
Глава 10 Реальные газы, жидкости и твердые тела
§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия
§ 61. Уравнение Ван-дер-Ваальса
§ 62. Изотермы Ван-дер-Ваальса и их анализ
§ 63. Внутренняя энергия реального газа
§ 66. Свойства жидкостей. Поверхностное натяжение
§ 68. Давление под искривленной поверхностью жидкости
§ 70. Твердые тела. Моно- и поликристаллы
§ 71. Типы кристаллических твердых тел
§ 73. Теплоемкость твердых тел
§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
§ 75. Фазовые переходы I и П рода
§ 76. Диаграмма состояния. Тройная точка
3 ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ
§ 77. Закон сохранения электрического заряда
§ 79. Электростатическое поле. Напряженность электростатического поля
§ 80. Принцип суперпозиции электростатических полей. Поле диполя
§ 81. Теорема Гаусса для электростатического поля в вакууме
§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
§ 83. Циркуляция вектора напряженности электростатического поля
§ 84. Потенциал электростатического поля
§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
§ 86. Вычисление разности потенциалов по напряженности поля
§ 87. Типы диэлектриков. Поляризация диэлектриков
§ 88. Поляризованность. Напряженность поля в диэлектрике
§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
§ 90. Условия на границе раздела двух диэлектрических сред
§ 92. Проводники в электростатическом поле
§ 93. Электрическая емкость уединенного проводника
Глава 12 Постоянный электрический ток
§ 96. Электрический ток, сила и плотность тока
§ 97. Сторонние силы. Электродвижущая сила и напряжение
§ 98. Закон Ома. Сопротивление проводников
§ 99. Работа и мощность тока. Закон Джоуля — Ленца
§ 100. Закон Ома для неоднородного участка цепи
§ 101. Правила Кирхгофа для разветвленных цепей
Глава 13 Электрические токи в металлах, вакууме и газах
§ 102. Элементарная классическая теория электропроводности металлов
§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
§ 104. Работа выхода электронов из металла
§ 105. Эмиссионные явления и их применение
§ 106. Ионизация газов. Несамостоятельный газовый разряд
§ 107. Самостоятельный газовый разряд и его типы
§ 109. Магнитное поле и его характеристики
§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
§ 111. Закон Ампера. Взаимодействие параллельных токов
§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
§ 113. Магнитное поле движущегося заряда
§ 114. Действие магнитного поля на движущийся заряд
§ 115. Движение заряженных частиц в магнитном поле
§ 116. Ускорители заряженных частиц
§ 118. Циркуляция вектора В магнитного поля в вакууме
§ 119. Магнитные поля соленоида и тороида
§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля В
§ 121. Работа по перемещению проводника и контура с током в магнитном поле
Глава 15 Электромагнитная индукция
§122. Явление электромагнитной индукции (опыты Фарадея)
§ 123. Закон Фарадея и его вывод из закона сохранения энергии
§ 124. Вращение рамки в магнитном поле
§ 125. Вихревые токи (токи Фуко)
§ 126. Индуктивность контура. Самоиндукция
§ 127. Токи при размыкании и замыкании цепи
§ 130. Энергия магнитного поля
Глава 16 Магнитные свойства вещества
§ 131. Магнитные моменты электронов и атомов
§ 133. Намагниченность. Магнитное поле в веществе
§ 134. Условия на границе раздела двух магнетиков
§ 135. Ферромагнетики и их свойства
§ 136. Природа ферромагнетизма
Глава 17 Основы теории Максвелла для электромагнитного поля
§ 137. Вихревое электрическое поле
§ 139. Уравнения Максвелла для электромагнитного поля
Глава 18 Механические и электромагнитные колебания
§ 140. Гармонические колебания и их характеристики
§ 141. Механические гармонические колебания
§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники
§ 143. Свободные гармонические колебания в колебательном контуре
§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
§ 145. Сложение взаимно перпендикулярных колебаний
§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
§ 152. Мощность, выделяемая в цепи переменного тока
§ 153. Волновые процессы. Продольные и поперечные волны
§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
§ 155. Принцип суперпозиции. Групповая скорость
S 159. Эффект Доплере в акустике
§ 160. Ультразвук и его применение
Глава 20 Электромагнитные волны
§ 161. Экспериментальное получение электромагнитных волн
§ 162. Дифференциальное уравнение электромагнитной волны
§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля
§ 164. Излучение диполя. Применение электромагнитных волн
5 ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ
Глава 21 Элементы геометрической и электронной оптики
§ 165. Основные законы оптики. Полное отражение
§ 166. Тонкие линзы. Изображение предметов с помощью линз
§ 187. Аберрации (погрешности) оптических систем
§ 168. Основные фотометрические величины и их единицы
§ 189. Элементы электронной оптики
§ 170. Развитие представлений о природе света
§ 171. Когерентность и монохроматичность световых волн
§ 173. Методы наблюдения интерференции света
§ 174. Интерференция света в тонких пленках
§ 175. Применение интерференции света
§ 176. Принцип Гюйгенса — Френеля
§ 177. Метод зон Френеля. Прямолинейное распространение света
§ 178. Дифракция Френеля на круглом отверстии и диске
§ 178. Дифракция Фраунгофера на одной щели
§ 180. Дифракция Фраунгофера на дифракционной решетке
§ 181. Пространственная решетка. Рассеяние света
§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
§ 183. Разрешающая способность оптических приборов
Глава 24 Взаимодействие электромагнитных волн с веществом
§ 186. Электронная теория дисперсии светя
§ 187. Поглощение (абсорбция) света
§ 189. Излучение Вавилова — Черенкова
§ 190. Естественный и поляризованный свет
§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
§ 192. Двойное лучепреломление
§ 193. Поляризационные призмы и поляроиды
§ 194. Анализ поляризованного света
§ 195. Искусственная оптическая анизотропия
§ 196. Вращение плоскости поляризации
Глава 26 Квантовая природа излучения
§ 197. Тепловое излучение и его характеристики
§ 199. Законы Стефана — Больцмана и смещения Вина
§ 200. Формулы Рэлея — Джинса и Планка
§ 201. Оптическая пирометрия. Тепловые источники света
§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
§ 205. Масса и импульс фотона. Давление света
§ 206. Эффект Комптона и его элементарная теория
§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения
6 ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ
Глава 27 Теория атома водорода по Бору
§ 208. Модели атома Томсона и Резерфорда
§ 209. Линейчатый спектр атома водорода
§ 212. Спектр атома водорода по Бору
Глава 28 Элементы квантовой механики
§ 213. Корпускулярно-волновой дуализм свойств вещества
§ 214. Некоторые свойства волн да Бройля
§ 215. Соотношение неопределенностей
§ 216. Волновая функция и ее статистический смысл
§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
§ 218. Принцип причинности в квинтовой механике
§ 219. Движение свободной частицы
§ 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
§ 222. Линейный гармонический осциллятор в квантовой механике
Глава 29 Элементы современной физики атомов и молекул
§ 223. Атом водорода в квантовой механике
§ 224. 1s-Состояние электрона в атоме водорода
§ 225. Спин электрона. Спиновое квантовое число
§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
§ 227. Принцип Паули. Распределение электронов в атоме по состояниям
§ 228. Периодическая система элементов Менделеева
§ 230. Молекулы: химические связи, понятие об энергетических уровнях
§ 231. Молекулярные спектры. Комбинационное рассеяние света
§ 232. Поглощение. Спонтанное и вынужденное излучения
§ 233. Оптические квантовые генераторы (лазеры)
Глава 30 Элементы квантовой статистики
§ 234. Квантовая статистика. Фазовое пространство. Функция распределения
§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
§ 236. Вырожденный электронный газ в металлах
§ 237. Понятие о квантовой теории теплоемкости. Фононы
§ 238. Выводы квантовой теории электропроводности металлов
§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона
Глава 31 Элементы физики твердого тела
§ 240. Понятие о зонной теории твердых тел
§ 241. Металлы, диэлектрики и полупроводники по зонной теории
§ 242. Собственная проводимость полупроводников
§ 243. Примесная проводимость полупроводников
§ 244. Фотопроводимость полупроводников
§ 245. Люминесценция твердых тел
§ 246. Контакт двух металлов по зонной теории
§ 247. Термоэлектрические явления и их применение
§ 248. Выпрямление на контакте металл — полупроводник
§ 249. Контакт электронного и дырочного полупроводников (p-n-переход)
§ 250. Полупроводниковые диоды и триоды (транзисторы)
7 ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Глава 32 Элементы физики атомного ядра
§ 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
§ 252. Дефект массы и энергия связи ядра
§ 253. Спин ядра и его магнитный момент
§ 254. Ядерные силы. Модели ядра
§ 255. Радиоактивное излучение и его виды
§ 256. Закон радиоактивного распада. Правила смещения
§ 257. Закономерности -распада
§ 259. Гамма-излучение и его свойства
§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра*)
§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
§ 262. Ядерные реакции и их основные типы
§ 263. Позитрон. +-Распад. Электронный захват
§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
§ 267. Понятие о ядерной энергетике
§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
Глава 33 Элементы физики элементарных частиц
§ 272. Типы взаимодействий элементарных частиц
§ 274. Гипероны. Странность и четность элементарных частиц
§ 204. Применение фотоэффекта
На явлении фотоэффекта основано действие фотоэлектронных приборов, получивших разнообразное применение в различных областях науки и техники. В настоящее время практически невозможно указать отрасли производства, где бы не использовались фотоэлементы — приемники излучения, работающие на основе фотоэффекта и преобразующие энергию излучения в электрическую.
Простейшим фотоэлементом с внешним фотоэффектом является вакуумный фотоэлемент. Он представляет собой откачанный стеклянный баллон, внутренняя поверхность которого (за исключением окошка для доступа излучения) покрыта фоточувствительным слоем, служащим фотокатодом. В качестве анода обычно используется кольцо или сетка, помещаемая в центре баллона. Фотоэлемент включается в цепь батареи, э.д.с. которой выбирается такой, чтобы обеспечить фототок насыщения. Выбор материала фотокатода определяется рабочей областью спектра: для регистрации видимого света и инфракрасного излучения используется кислородно-цезиевый катод, для регистрации ультрафиолетового излучения и коротковолновой части видимого света — сурьмяно-цезиевый. Вакуумные фотоэлементы безынерционны, и для них наблюдается строгая пропорциональность фототока интенсивности излучения. Эти свойства позволяют использовать вакуумные фотоэлементы в качестве фотометрических приборов, например фотоэлектрический экспонометр, люксметр (измеритель освещенности) и т. д.
Для увеличения интегральной чувствительности вакуумных фотоэлементов (фототок насыщения, приходящийся на 1 лм светового потока) баллон заполняется разреженным инертным газом (Аr или Ne при давлении 1,313 Па). Фототок в таком элементе, называемом газонаполненным, усиливается вследствие ударной ионизации молекул газа фотоэлектронами. Интегральная чувствительность газонаполненных фотоэлементов ( 1 мА/лм) гораздо выше, чем для вакуумных (20—150 мкА/лм), но они обладают по сравнению с последними большей инерционностью (менее строгой пропорциональностью фототока интенсивности излучения), что приводит к ограничению области их применения.
Для усиления фототока применяются уже рассмотренные выше (см. рис. 155) фотоэлектронные умножители, в которых наряду с фотоэффектом используется явление вторичной электронной эмиссии (см. § 105). Размеры фотоэлектронных умножителей немного превышают размеры обычной радиолампы, общий коэффициент усиления составляет 107 (при напряжении питания 1—1,5 кВ), а их интегральная чувствительность может достигать 10 А/лм. Поэтому фотоэлектронные умножители начинают вытеснять фотоэлементы, правда, их применение связано с использованием высоковольтных стабилизированных источников питания, что несколько неудобно.
Фотоэлементы с внутренним фотоэффектом, называемые полупроводниковыми фотоэлементами или фотосопротивлениями (фоторезисторами), обладают гораздо большей интегральной чувствительностью, чем вакуумные. Для их изготовления используются PbS, CdS, PbSe и некоторые другие полупроводники. Если фотокатоды вакуумных фотоэлементов и фотоэлектронных умножителей имеют красную границу фотоэффекта не выше 1,1 мкм, то применение фотосопротивлений позволяет производить измерения в далекой инфракрасной области спектра (34 мкм), а также в областях рентгеновского и гамма-излучений. Кроме того, они малогабаритны и имеют низкое напряжение питания. Недостаток фотосопротивлений — их заметная инерционность, поэтому они непригодны для регистрации быстропеременных световых потоков.
Фотоэлементы с вентильным фотоэффектом, называемые вентильными фотоэлементами (фотоэлементами с запирающим слоем), обладая, подобно элементам с внешним фотоэффектом, строгой пропорциональностью фототока интенсивности излучения, имеют большую по сравнению с ними интегральную чувствительность (примерно 2—30 мА/лм) и не нуждаются во внешнем источнике э.д.с. К числу вентильных фотоэлементов относятся германиевые, кремниевые, селеновые, купроксные, сернисто-серебряные и др.
Кремниевые и другие вентильные фотоэлементы применяются для создания солнечных батарей, непосредственно преобразующих световую энергию в электрическую. Эти батареи уже в течение многих лет работают на космических спутниках и кораблях. К.п.д. этих батарей составляет 10% и, как показывают теоретические расчеты, может быть доведен до 22%, что открывает широкие перспективы их использования в качестве источников электроэнергии для бытовых и производственных нужд.
Рассмотренные виды фотоэффекта используются также в производстве для контроля, управления и автоматизации различных процессов, в военной технике для сигнализации и локации невидимым излучением, в технике звукового кино, в различных системах связи и т. д.
§ 205. Масса и импульс фотона. Давление света
Согласно гипотезе световых квантов Эйнштейна, свет испускается, поглощается и распространяется дискретными порциями (квантами), названными фотонами. Энергия фотона 0=h. Его масса находится из закона взаимосвязи массы и энергии (см. (40.8)):
(205.1)
Фотон — элементарная частица, которая всегда (в любой среде!) движется со скоростью света с и имеет массу покоя, равную нулю. Следовательно, масса фотона отличается от массы таких элементарных частиц, как электрон, протон и нейтрон, которые обладают отличной от нуля массой покоя и могут находиться в состоянии покоя.
Импульс фотона р получим, если в общей формуле (40.7) теории относительности
положим массу покоя фотона = 0:
(205.2)
Из приведенных рассуждений следует, что фотон, как и любая другая частица, характеризуется энергией, массой и импульсом. Выражения (205.1), (205.2) и (200.2) связывают корпускулярные характеристики фотона — массу, импульс и энергию — с волновой характеристикой света — его частотой .
Если фотоны обладают импульсом, то свет, падающий на тело, должен оказывать на него давление. Согласно квантовой теории, давление света на поверхность обусловлено тем, что каждый фотон при соударении с поверхностью передает ей свой импульс.
Рассчитаем с точки зрения квантовой теории световое давление, оказываемое на поверхность тела потоком монохроматического излучения (частота ), падающего перпендикулярно поверхности. Если в единицу времени на единицу площади поверхности тела падает N фотонов, то при коэффициенте отражения света от поверхности тела N фотонов отразится, а (1–)N — поглотится. Каждый поглощенный фотон передаст поверхности импульс p=h/c, а каждый отраженный — 2p=2h/c (при отражении импульс фотона изменяется на –p). Давление света на поверхность равно импульсу, который передают поверхности в 1 с N фотонов:
Nh=Ee есть энергия всех фотонов, падающих на единицу поверхности в единицу времени, т. е. энергетическая освещенность поверхности (см. § 168), a Ee/c=w — объемная плотность энергии излучения. Поэтому давление, производимое светом при нормальном падении на поверхность,
(205.3)
Формула (205.3), выведенная на основе квантовых представлений, совпадает с выражением, получаемым из электромагнитной (волновой) теории Максвелла (см. § 163). Таким образом, давление света одинаково успешно объясняется и волновой, и квантовой теорией. Как уже говорилось (см. § 163), экспериментальное доказательство существования светового давления на твердые тела и газы дано в опытах П. И. Лебедева, сыгравших в свое время большую роль в утверждении теории Максвелла. Лебедев использовал легкий подвес на тонкой нити, по краям которого прикреплены легкие крылышки, одни из которых зачернены, а поверхности других зеркальные. Для исключения конвекции и радиометрического эффекта (см. § 49) использовалась подвижная система зеркал, позволяющая направлять свет на обе поверхности крылышек, подвес помещался в откачанный баллон, крылышки подбиралась очень тонкими (чтобы температура обеих поверхностей была одинакова). Световое давление на крылышки определялось по углу закручивания нити подвеса и совпадало с теоретически рассчитанным. В частности оказалось, что давление света на зеркальную поверхность вдвое больше, чем на зачерненную (см. (205.3)).
§ 206. Эффект Комптона и его элементарная теория
Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892—1962), исследуя в 1923 г. рассеяние монохроматического рентгеновского излучения веществами с легкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение. Опыты показали, что разность ='– не зависит от длины волны падающего излучения и природы рассеивающего вещества, а определяется только углом рассеяния :
(206.1)
где ' — длина волны рассеянного излучения, С — комптоновская длина волны (при рассеянии фотона на электроне С= 2,426 пм).
Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и -излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.
Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу, т. е. представляет собой поток фотонов, то эффект Комптона — результат упругого столкновения рентгеновских фотонов со свободными электронами вещества (для легких атомов электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными). В процессе этого столкновения фотон передает электрону часть своих энергии и импульса в соответствии с законами их сохранения.
Рассмотрим упругое столкновение двух частиц (рис. 291) — налетающего фотона, обладающего импульсом p = h/c и энергией =h, с покоящимся свободным электроном (энергия покоя W0=m0c2; т0—масса покоя электрона). Фотон, столкнувшись с электроном, передает ему часть своей энергии и импульса и изменяет направление движения (рассеивается). Уменьшение энергии фотона означает увеличение длины волны рассеянного излучения. При каждом столкновении выполняются законы сохранения энергии и импульса.
Согласно закону сохранения энергии,
(206.2)
а согласно закону сохранения импульса,
(206.3)
где W0=m0c2 — энергия электрона до столкновения, =h — энергия налетающего фотона, W=— энергия электрона после столкновения (используется релятивистская формула, так как скорость электрона отдачи в общем случае значительна), — энергия рассеянного фотона. Подставив в выражение (206.2) значения величин и представив (206.3) в соответствии с рис. 291, получим
(206.4)
(206.5)
Решая уравнения (206.4) и (206.5) совместно, получим
Поскольку = c/, ' = c/' и = ' – , получим
(206.6)
Выражение (206.6) есть не что иное, как полученная экспериментально Комптоном формула (206.1). Подстановка в нее значений h, m0 и с дает комптоновскую длину волны электрона C = h/(m0c) = 2,426 пм.
Наличие в составе рассеянного излучения несмещенной линии (излучения первоначальной длины волны) можно объяснить следующим образом. При рассмотрении механизма рассеяния предполагалось, что фотон соударяется лишь со свободным электроном. Однако если электрон сильно связан с атомом, как это имеет место для внутренних электронов (особенно в тяжелых атомах), то фотон обменивается энергией и импульсом с атомом в целом. Так как масса атома по сравнению с массой электрона очень велика, то атому передается лишь ничтожная часть энергии фотона. Поэтому в данном случае длина волны ' рассеянного излучения практически не будет отличаться от длины волны падающего излучения.
Из приведенных рассуждений следует также, что эффект Комптона не может наблюдаться в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешний электрон нельзя считать свободным.
Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.
Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором — поглощается. Рассеяние происходит при взаимодействии фотона со свободным электроном, а фотоэффект — со связанными электронами. Можно показать, что при столкновении фотона со свободным электроном не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т. е. эффект Комптона.
§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения
Рассмотренные в этой главе явления — излучение черного тела, фотоэффект, эффект Комптона — служат доказательством квантовых (корпускулярных) представлений о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую (электромагнитную) природу света. Наконец, давление и преломление света объясняются как волновой, так и квантовой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств — непрерывных (волны) и дискретных (фотоны), которые взаимно дополняют друг друга.
Основные уравнения (см. § 205), связывающие корпускулярные свойства электромагнитного излучения (энергия и импульс фотона) с волновыми свойствами (частота или длина волны):
Более детальное рассмотрение оптических явлений приводит к выводу, что свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотонов. Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определенные закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные — в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона и тем труднее обнаруживаются волновые свойства света (например, волновые свойства (дифракция) рентгеновского излучения обнаружены лишь после применения в качестве дифракционной решетки кристаллов).
Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей распространения света. Например, дифракция света на щели состоит в том, что при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотонов в различные точки экрана неодинакова, то и возникает дифракционная картина. Освещенность экрана пропорциональна вероятности попадания фотонов на единицу площади экрана. С другой стороны, по волновой теории, освещенность пропорциональна квадрату амплитуды световой волны в той же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку.