Файл: Учебник Трофимова Курс физики.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.07.2020

Просмотров: 34238

Скачиваний: 520

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Предисловие

Введение

Предмет физики и ее связь с другими науками

Единицы физических величин

1 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Глава 1 Элементы кинематики

§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения

§ 2. Скорость

§ 3. Ускорение и его составляющие

§ 4. Угловая скорость и угловое ускорение

Глава 2 Динамика материальной точки и поступательного движения твердого тела

§ 5. Первый закон Ньютона. Масса. Сила

§ 6. Второй закон Ньютона

§ 7. Третий закон Ньютона

§ 8. Силы трения

§ 9. Закон сохранения импульса. Центр масс

§ 10. Уравнение движения тела переменной массы

Глава 3 Работа и энергия

§11. Энергия, работа, мощность

§ 12. Кинетическая и потенциальная энергии

§ 13. Закон сохранения энергии

§ 14. Графическом представление энергии

§ 15. Удар абсолютно упругих и неупругих тел

Глава 4 Механика твердого тела

§ 16. Момент инерции

§ 17. Кинетическая энергия вращения

§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела

§ 19. Момент импульса и закон то сохранения

§ 20. Свободные оси. Гироскоп

§ 21. Деформации твердого тела

Глава 5 Тяготение. Элементы теории поля

§ 22. Законы Кеплера. Закон всемирного тяготения

§ 23. Сила тяжести и вес. Невесомость

§ 24. Поле тяготения и то напряженность

§ 25. Работа в поле тяготения. Потенциал поля тяготения

§ 26. Космические скорости

§ 27. Неинерциальные системы отсчета. Силы инерции

Глава 6 Элементы механики жидкостей

§ 28. Давление в жидкости и газе

§ 29. Уравнение неразрывности

§ 30. Уравнение Бернулли и следствия из него

§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей

§ 32. Методы определения вязкости

§ 33. Движение тел в жидкостях и газах

Глава 7 Элементы специальной (частной) теории относительности

§ 34. Преобразования Галилея. Механический принцип относительности

§ 35. Постулаты специальной (частной) теории относительности

§ 36. Преобразования Лоренца

§ 37. Следствия из преобразований Лоренца

§ 38. Интервал между событиями

§ 39. Основной закон релятивистской динамики материальной точки

§ 40. Закон взаимосвязи массы и энергии

2 ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ

Глава 8 Молекулярно-кинетическая теория идеальных газов

§ 41. Статистический и термодинамический методы. Опытные законы идеального газа

§ 42. Уравнение Клапейрона — Менделеева

§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов

§ 44. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения

§ 45. Барометрическая формула. Распределение Больцмана

§ 46. Среднее число столкновений и средняя длина свободного пробега молекул

§ 47. Опытное обоснование молекулярно-кинетической теории

§ 48. Явления переноса в термодинамически неравновесных системах

§ 48. Вакуум и методы его получения. Свойства ультраразреженных газов

Глава 9 Основы термодинамики

§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул

§ 51. Первое начало термодинамики

§ 52. Работа газа при изменении его объема

§ 53. Теплоемкость

§ 54. Применение первого начала термодинамики к изопроцессам

§ 55. Адиабатический процесс. Политропный процесс

§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы

§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

§ 58. Второе начало термодинамики

§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа

Задачи

Глава 10 Реальные газы, жидкости и твердые тела

§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия

§ 61. Уравнение Ван-дер-Ваальса

§ 62. Изотермы Ван-дер-Ваальса и их анализ

§ 63. Внутренняя энергия реального газа

§ 64. Эффект Джоуля — Томсона

§ 65. Сжижение газов

§ 66. Свойства жидкостей. Поверхностное натяжение

§ 67. Смачивание

§ 68. Давление под искривленной поверхностью жидкости

§ 69. Капиллярные явления

§ 70. Твердые тела. Моно- и поликристаллы

§ 71. Типы кристаллических твердых тел

§ 72. Дефекты в кристаллах

§ 73. Теплоемкость твердых тел

§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела

§ 75. Фазовые переходы I и П рода

§ 76. Диаграмма состояния. Тройная точка

Задачи

3 ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ

Глава 11 Электростатика

§ 77. Закон сохранения электрического заряда

§ 78. Закон Кулона

§ 79. Электростатическое поле. Напряженность электростатического поля

§ 80. Принцип суперпозиции электростатических полей. Поле диполя

§ 81. Теорема Гаусса для электростатического поля в вакууме

§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме

§ 83. Циркуляция вектора напряженности электростатического поля

§ 84. Потенциал электростатического поля

§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности

§ 86. Вычисление разности потенциалов по напряженности поля

§ 87. Типы диэлектриков. Поляризация диэлектриков

§ 88. Поляризованность. Напряженность поля в диэлектрике

§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике

§ 90. Условия на границе раздела двух диэлектрических сред

§ 91. Сегнетоэлектрики

§ 92. Проводники в электростатическом поле

§ 93. Электрическая емкость уединенного проводника

§ 94. Конденсаторы

§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля

Задачи

Глава 12 Постоянный электрический ток

§ 96. Электрический ток, сила и плотность тока

§ 97. Сторонние силы. Электродвижущая сила и напряжение

§ 98. Закон Ома. Сопротивление проводников

§ 99. Работа и мощность тока. Закон Джоуля — Ленца

§ 100. Закон Ома для неоднородного участка цепи

§ 101. Правила Кирхгофа для разветвленных цепей

Задачи

Глава 13 Электрические токи в металлах, вакууме и газах

§ 102. Элементарная классическая теория электропроводности металлов

§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов

§ 104. Работа выхода электронов из металла

§ 105. Эмиссионные явления и их применение

§ 106. Ионизация газов. Несамостоятельный газовый разряд

§ 107. Самостоятельный газовый разряд и его типы

§ 108. Плазма и ее свойства

Задачи

Глава 14 Магнитное поле

§ 109. Магнитное поле и его характеристики

§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля

§ 111. Закон Ампера. Взаимодействие параллельных токов

§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля

§ 113. Магнитное поле движущегося заряда

§ 114. Действие магнитного поля на движущийся заряд

§ 115. Движение заряженных частиц в магнитном поле

§ 116. Ускорители заряженных частиц

§ 117. Эффект Холла

§ 118. Циркуляция вектора В магнитного поля в вакууме

§ 119. Магнитные поля соленоида и тороида

§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля В

§ 121. Работа по перемещению проводника и контура с током в магнитном поле

Задачи

Глава 15 Электромагнитная индукция

§122. Явление электромагнитной индукции (опыты Фарадея)

§ 123. Закон Фарадея и его вывод из закона сохранения энергии

§ 124. Вращение рамки в магнитном поле

§ 125. Вихревые токи (токи Фуко)

§ 126. Индуктивность контура. Самоиндукция

§ 127. Токи при размыкании и замыкании цепи

§ 128. Взаимная индукция

§ 129. Трансформаторы

§ 130. Энергия магнитного поля

Глава 16 Магнитные свойства вещества

§ 131. Магнитные моменты электронов и атомов

§ 132. Диа- и парамагнетизм

§ 133. Намагниченность. Магнитное поле в веществе

§ 134. Условия на границе раздела двух магнетиков

§ 135. Ферромагнетики и их свойства

§ 136. Природа ферромагнетизма

Глава 17 Основы теории Максвелла для электромагнитного поля

§ 137. Вихревое электрическое поле

§ 138. Ток смещения

§ 139. Уравнения Максвелла для электромагнитного поля

4 КОЛЕБАНИЯ И ВОЛНЫ

Глава 18 Механические и электромагнитные колебания

§ 140. Гармонические колебания и их характеристики

§ 141. Механические гармонические колебания

§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники

§ 143. Свободные гармонические колебания в колебательном контуре

§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

§ 145. Сложение взаимно перпендикулярных колебаний

§ 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания

§ 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение

§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс

§ 148. Переменный ток

§ 150. Резонанс напряжений

§ 151. Резонанс токов

§ 152. Мощность, выделяемая в цепи переменного тока

Глава 19 Упругие волны

§ 153. Волновые процессы. Продольные и поперечные волны

§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение

§ 155. Принцип суперпозиции. Групповая скорость

§ 156. Интерференция волн

§ 157. Стоячие волны

§ 158. Звуковые волны

S 159. Эффект Доплере в акустике

§ 160. Ультразвук и его применение

Глава 20 Электромагнитные волны

§ 161. Экспериментальное получение электромагнитных волн

§ 162. Дифференциальное уравнение электромагнитной волны

§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля

§ 164. Излучение диполя. Применение электромагнитных волн

5 ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ

Глава 21 Элементы геометрической и электронной оптики

§ 165. Основные законы оптики. Полное отражение

§ 166. Тонкие линзы. Изображение предметов с помощью линз

§ 187. Аберрации (погрешности) оптических систем

§ 168. Основные фотометрические величины и их единицы

§ 189. Элементы электронной оптики

Глава 22 Интерференция света

§ 170. Развитие представлений о природе света

§ 171. Когерентность и монохроматичность световых волн

§ 172. Интерференция света

§ 173. Методы наблюдения интерференции света

§ 174. Интерференция света в тонких пленках

§ 175. Применение интерференции света

Глава 23 Дифракция света

§ 176. Принцип Гюйгенса — Френеля

§ 177. Метод зон Френеля. Прямолинейное распространение света

§ 178. Дифракция Френеля на круглом отверстии и диске

§ 178. Дифракция Фраунгофера на одной щели

§ 180. Дифракция Фраунгофера на дифракционной решетке

§ 181. Пространственная решетка. Рассеяние света

§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов

§ 183. Разрешающая способность оптических приборов

§ 184. Понятие о голографии

Глава 24 Взаимодействие электромагнитных волн с веществом

§ 185. Дисперсия света

§ 186. Электронная теория дисперсии светя

§ 187. Поглощение (абсорбция) света

§ 188. Эффект Доплера

§ 189. Излучение Вавилова — Черенкова

Глава 25 Поляризация света

§ 190. Естественный и поляризованный свет

§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков

§ 192. Двойное лучепреломление

§ 193. Поляризационные призмы и поляроиды

§ 194. Анализ поляризованного света

§ 195. Искусственная оптическая анизотропия

§ 196. Вращение плоскости поляризации

Глава 26 Квантовая природа излучения

§ 197. Тепловое излучение и его характеристики

§ 188. Закон Кирхгофа

§ 199. Законы Стефана — Больцмана и смещения Вина

§ 200. Формулы Рэлея — Джинса и Планка

§ 201. Оптическая пирометрия. Тепловые источники света

§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта

§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света

§ 204. Применение фотоэффекта

§ 205. Масса и импульс фотона. Давление света

§ 206. Эффект Комптона и его элементарная теория

§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения

6 ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ

Глава 27 Теория атома водорода по Бору

§ 208. Модели атома Томсона и Резерфорда

§ 209. Линейчатый спектр атома водорода

§ 210. Постулаты Бора

§ 211. Опыты Франка и Герца

§ 212. Спектр атома водорода по Бору

Глава 28 Элементы квантовой механики

§ 213. Корпускулярно-волновой дуализм свойств вещества

§ 214. Некоторые свойства волн да Бройля

§ 215. Соотношение неопределенностей

§ 216. Волновая функция и ее статистический смысл

§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

§ 218. Принцип причинности в квинтовой механике

§ 219. Движение свободной частицы

§ 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»

§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект

§ 222. Линейный гармонический осциллятор в квантовой механике

Глава 29 Элементы современной физики атомов и молекул

§ 223. Атом водорода в квантовой механике

§ 224. 1s-Состояние электрона в атоме водорода

§ 225. Спин электрона. Спиновое квантовое число

§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны

§ 227. Принцип Паули. Распределение электронов в атоме по состояниям

§ 228. Периодическая система элементов Менделеева

§ 229. Рентгеновские спектры

§ 230. Молекулы: химические связи, понятие об энергетических уровнях

§ 231. Молекулярные спектры. Комбинационное рассеяние света

§ 232. Поглощение. Спонтанное и вынужденное излучения

§ 233. Оптические квантовые генераторы (лазеры)

Глава 30 Элементы квантовой статистики

§ 234. Квантовая статистика. Фазовое пространство. Функция распределения

§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака

§ 236. Вырожденный электронный газ в металлах

§ 237. Понятие о квантовой теории теплоемкости. Фононы

§ 238. Выводы квантовой теории электропроводности металлов

§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона

Глава 31 Элементы физики твердого тела

§ 240. Понятие о зонной теории твердых тел

§ 241. Металлы, диэлектрики и полупроводники по зонной теории

§ 242. Собственная проводимость полупроводников

§ 243. Примесная проводимость полупроводников

§ 244. Фотопроводимость полупроводников

§ 245. Люминесценция твердых тел

§ 246. Контакт двух металлов по зонной теории

§ 247. Термоэлектрические явления и их применение

§ 248. Выпрямление на контакте металл — полупроводник

§ 249. Контакт электронного и дырочного полупроводников (p-n-переход)

§ 250. Полупроводниковые диоды и триоды (транзисторы)

7 ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Глава 32 Элементы физики атомного ядра

§ 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа

§ 252. Дефект массы и энергия связи ядра

§ 253. Спин ядра и его магнитный момент

§ 254. Ядерные силы. Модели ядра

§ 255. Радиоактивное излучение и его виды

§ 256. Закон радиоактивного распада. Правила смещения

§ 257. Закономерности -распада

§ 258. –-Распад. Нейтрино

§ 259. Гамма-излучение и его свойства

§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра*)

§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц

§ 262. Ядерные реакции и их основные типы

§ 263. Позитрон. +-Распад. Электронный захват

§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов

§ 265. Реакция деления ядра

§ 266. Цепная реакция деления

§ 267. Понятие о ядерной энергетике

§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций

Глава 33 Элементы физики элементарных частиц

§ 269. Космическое излучение

§ 270. Мюоны и их свойства

§ 271. Мезоны и их свойства

§ 272. Типы взаимодействий элементарных частиц

§ 273. Частицы и античастицы

§ 274. Гипероны. Странность и четность элементарных частиц

§ 275. Классификация элементарных частиц. Кварки

ЗАКЛЮЧЕНИЕ

Таким образом, появление связанных зарядов приводит к возникновению допол­нительного электрического поля Е' (поля, создаваемого связанными зарядами), кото­рое направлено против внешнего поля Е0 (поля, создаваемого свободными зарядами) и ослабляет его. Результирующее поле внутри диэлектрика

Поле Е'='/0 (поле, созданное двумя бесконечными заряженными плоскостями; см. формулу (82.2)), поэтому

(88.3)

Определим поверхностную плотность связанных зарядов '. По (88.1), полный дипольный момент пластинки диэлектрика pV =PV = PSd, где S площадь грани пластинки, d — ее толщина. С другой стороны, полный дипольный момент, согласно (80.3), равен произведению связанного заряда каждой грани Q' =' S на расстояние d между ними, т. е. рV = ' Sd. Таким образом, PSd= ' Sd, или

(88.4)

т. е. поверхностная плотность связанных зарядов ' равна поляризованности Р. Подставив в (88.3) выражения (88.4) и (88.2), получим

откуда напряженность результирующего поля внутри диэлектрика равна

(88.5)

Безразмерная величина

(88.6)

называется диэлектрической проницаемостью среды. Сравнивая (88.5) и (88.6), видим, что показывает, во сколько раз поле ослабляется диэлектриком, и характеризует количественно свойство диэлектрика поляризоваться в электрическом поле.

§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике

Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна . Вектор напряженности Е, переходя через границу диэлектриков, претерпевает скачко­образное изменение, создавая тем самым неудобства при расчетах электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризо­вать поле еще вектором электрического смещения, который для электрически изотроп­ной среды, по определению, равен

(89.1)

Используя формулы (88.6) и (88.2), вектор электрического смещения можно выразить как

(89.2)

Единица электрического смещения — кулон на метр в квадрате (Кл/м2).

Рассмотрим, с чем можно связать вектор электрического смещения. Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле свя­занных зарядов. Результирующее поле в диэлектрике описывается вектором напряжен­ности Е, и потому он зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, воз­никающие в диэлектрике, могут вызвать, однако, перераспределение свободных заря­дов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.


Аналогично, как и поле Е, поле D изображается с помощью линий электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности (см. §79).

Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора D только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.

Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверх­ность

где Dn — проекция вектора D на нормаль n к площадке dS.

Теорема Гаусса для электростатического поля в диэлектрике:

(89.3)

т. е. поток вектора смещения электростатического поля в диэлектрике сквозь произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме теорема Гаусса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.

Для вакуума Dn = 0En ( =1), тогда поток вектора напряженности Е сквозь произ­вольную замкнутую поверхность (ср. с (81.2)) равен

Так как источниками поля Е в среде являются как свободные, так и связанные заряды, то теорему Гаусса (81.2) для поля Е в самом общем виде можно записать как

где — соответственно алгебраические суммы свободных и связанных зарядов, охватываемых замкнутой поверхностью S. Однако эта формула неприемлема для описания поля Е в диэлектрике, так как она выражает свойства неизвестного поля Е через связанные заряды, которые, в свою очередь, определяются им же. Это еще раз доказывает целесообразность введения вектора электрического смещения.

§ 90. Условия на границе раздела двух диэлектрических сред

Рассмотрим связь между векторами Е и D на границе раздела двух однородных изотропных диэлектриков (диэлектрические проницаемости которых 1 и 2) при отсут­ствии на границе свободных зарядов. Построим вблизи границы раздела диэлектриков 1 и 2 небольшой замкнутый прямоугольный контур ABCDA длины l, ориентировав его так, как показано на рис. 136. Согласно теореме (83.3) о циркуляции вектора Е,

откуда

(знаки интегралов по АВ и CD разные, так как пути интегрирования противоположны, а интегралы по участкам ВС и DA ничтожно малы). Поэтому

(90.1)

Заменив, согласно (89.1), проекции вектора Е проекциями вектора D, деленными на 0, получим

(90.2)

На границе раздела двух диэлектриков (рис. 137) построим прямой цилиндр ничтожно малой высоты, одно основание которого находится в первом диэлектрике, другое — во втором. Основания S настолько малы, что в пределах каждого из них вектор D одинаков. Согласно теореме Гаусса (89.3),

(нормали n и n' к основаниям цилиндра направлены противоположно). Поэтому

(90.3)

Заменив, согласно (89.1), проекции вектора D проекциями вектора Е, умноженными на 0, получим


(90.4)

Таким образом, при переходе через границу раздела двух диэлектрических сред тангенциальная составляющая вектора Е (Е) и нормальная составляющая вектора D (Dn) изменяются непрерывно (не претерпевают скачка), а нормальная составляющая вектора Е (En) и тангенциальная составляющая вектора D (D) претерпевают скачок.

Из условий (90.1) — (90.4) для составляющих векторов Е и D следует, что линии этих векторов испытывают излом (преломляются). Найдем связь между углами 1 и 2 (на рис. 138 1>2). Согласно (90.1) и (90.4), Е2 = Е1 и 2En2 = 1En1. Разложим векторы E1 и E2 у границы раздела на тангенциальные и нормальные составляющие. Из рис. 138 следует, что

Учитывая записанные выше условия, получим закон преломления линий напряжен­ности Е (а значит, и линий смещения D)

Эта формула показывает, что, входя в диэлектрик с большей диэлектрической проница­емостью, линии Е и D удаляются от нормали.

§ 91. Сегнетоэлектрики

Сегнетоэлектрики — диэлектрики, обладающие в определенном интервале температур спонтанной (самопроизвольной) поляризованностью, т. е. поляризованностью в отсут­ствие внешнего электрического поля. К сегнетоэлектрикам относятся, например, дета­льно изученные И. В. Курчатовым (1903—1960) и П. П. Кобеко (1897—1954) сегнетова соль NaKC4H4O6 • 4Н2О (от нее и получили свое название сегнетоэлектрики) и титанат бария ВаТiO3.

При отсутствии внешнего электрического поля сегнетоэлектрик представляет собой как бы мозаику из доменов — областей с различными направлениями поляризованности. Это схематически показано на примере титаната бария (рис. 139), где стрелки и знаки , указывают направление вектора Р. Так как в смежных доменах эти направления различны, то в целом дипольный момент диэлектрика равен нулю. При внесении сегнетоэлектрика во внешнее поле происходит переориентация дипольных моментов доменов по полю, а возникшее при этом суммарное электрическое поле доменов будет поддерживать их некоторую ориентацию и после прекращения действия внешнего поля. Поэтому сегнетоэлектрики имеют аномально большие значения ди­электрической проницаемости (для сегнетовой соли, например, max104).

Сегнетоэлектрические свойства сильно зависят от температуры. Для каждого сег­нетоэлектрика имеется определенная температура, выше которой его необычные свой­ства исчезают и он становится обычным диэлектриком. Эта температура называется точкой Кюри (в честь французского физика Пьера Кюри (1859—1906)). Как правило, сегнетоэлектрики имеют только одну точку Кюри; исключение составляют лишь сегнетова соль (—18 и +24°С) и изоморфные с нею соединения. В сегнетоэлектриках вблизи точки Кюри наблюдается также резкое возрастание теплоемкости вещества. Превращение сегнетоэлектриков в обычный диэлектрик, происходящее в точке Кюри, сопровождается фазовым переходом II рода (см. § 75).


Диэлектрическая проницаемость (а следовательно, и диэлектрическая восприим­чивость ) сегнетоэлектриков зависит от напряженности Е поля в веществе, а для других диэлектриков эти величины являются характеристиками вещества.

Для сегнетоэлектриков формула (88.2) не соблюдается; для них связь между векторами поляризованности (Р) и напряженности (Е) нелинейная и зависит от значений Е в предшествующие моменты времени. В сегнетоэлектриках наблюдается явление диэлектрического гистерезиса («запаздывания»). Как видно из рис. 140, с увеличением напряженности Е внешнего электрического поля поляризованность Р растет, достигая насыщения (кривая 1). Уменьшение Р с уменьшением Е происходит по кривой 2, и при Е=0 сегнетоэлектрик сохраняет остаточную поляризованность Р0, т.е. сегнетоэлектрик остается поляризованным в отсутствие внешнего электрического поля. Чтобы унич­тожить остаточную поляризованность, надо приложить электрическое поле обратного направления (—Eс). Величина Еc называется коэрцитивной силой (от лат. coercitio — удерживание). Если далее Е изменять, то Р изменяется по кривой 3 петли гистерезиса.

Интенсивному изучению сегнетоэлектриков послужило открытие академиком Б. М. Вулом (1903—1985) аномальных диэлектрических свойств титаната бария. Титанат бария из-за его химической устойчивости и высокой механической прочности, а также из-за сохранения сегнетоэлектрических свойств в широком температурном интервале нашел большое научно-техническое применение (например, в качестве гене­ратора и приемника ультразвуковых воли). В настоящее время известно более сотни сегнетоэлектриков, не считая их твердых растворов. Сегнетоэлектрики широко применяются также в качестве материалов, обладающих большими значениями (например, в конденсаторах).

Следует упомянуть еще о пьезоэлектриках — кристаллических веществах, в которых при сжатии или растяжении в определенных направлениях возникает электрическая поляризация даже в отсутст­вие внешнего электрического поля (прямой пьезоэффект). Наблюдается и обратный пьезоэффект — появление механической деформации под действием электрического поля. У некоторых пьезоэлектриков решетка положительных ионов в состоянии термодинамического равновесия смеще­на относительно решетки отрицательных ионов, в результате чего они оказываются поляризован­ными даже без внешнего электрического поля. Такие кристаллы называются пироэлектриками. Еще существуют электреты — диэлектрики, длительно сохраняющие поляризованное состояние после снятия внешнего электрического поля (электрические аналоги постоянных магнитов). Эти группы веществ находят широкое применение в технике и бытовых устройствах.

§ 92. Проводники в электростатическом поле

Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действовать электростатическое поле, в результате чего они начнут перемещаться. Перемещение зарядов (ток) продолжается до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напряженность поля во всех точках внутри проводника равна нулю:


Отсутствие поля внутри проводника означает, согласно (85.2), что потенциал во всех точках внутри проводника постоянен ( = const), т. е. поверхность проводника в электростатическом поле является эквипотенциальной (см. § 85). Отсюда же следует, что вектор напряженности поля на внешней поверхности проводника направлен по нормали к каждой точке его поверхности. Если бы это было не так, то под действием касательной составляющей Е заряды начали бы по поверхности проводника переме­щаться, что, в свою очередь, противоречило бы равновесному распределению зарядов.

Если проводнику сообщить некоторый заряд Q, то нескомпенсированные заряды располагаются только на поверхности проводника. Это следует непосредственно из теоремы Гаусса (89.3), согласно которой заряд Q, находящийся внутри проводника в некотором объеме, ограниченном произвольной замкнутой поверхностью, равен

так как во всех точках внутри поверхности D=0.

Найдем взаимосвязь между напряженностью Е поля вблизи поверхности заряжен­ного проводника и поверхностной плотностью зарядов на его поверхности. Для этого применим теорему Гаусса к бесконечно малому цилиндру с основаниями S, пересека­ющему границу проводник — диэлектрик. Ось цилиндра ориентирована вдоль вектора Е (рис. 141). Поток вектора электрического смещения через внутреннюю часть цилинд­рической поверхности равен нулю, так как внутри проводника Е1 (а следовательно, и D1) равен нулю, поэтому поток вектора D сквозь замкнутую цилиндрическую поверхность определяется только потоком сквозь наружное основание цилиндра. Со­гласно теореме Гаусса (89.3), этот поток (DS) равен сумме зарядов (Q=S), охваты­ваемых поверхностью: DS=S т.е.

(92.1)

или

(92.2)

где диэлектрическая проницаемость среды, окружающей проводник.

Таким образом, напряженность электростатического поля у поверхности провод­ника определяется поверхностной плотностью зарядов. Можно показать, что соот­ношение (92.2) задает напряженность электростатического поля вблизи поверхности проводника любой формы.

Если во внешнее электростатическое поле внести нейтральный проводник, то свободные заряды (электроны, ионы) будут перемещаться: положительные — по полю, отрицательные — против поля (рис. 142, а). На одном конце проводника будет скап­ливаться избыток положительного заряда, на другом — избыток отрицательного. Эти заряды называются индуцированными. Процесс будет происходить до тех пор, пока напряженность поля внутри проводника не станет равной нулю, а линии напряжен­ности вне проводника — перпендикулярными его поверхности (рис. 142, б). Таким образом, нейтральный проводник, внесенный в электростатическое поле, разрывает часть линий напряженности; они заканчиваются на отрицательных индуцированных зарядах и вновь начинаются на положительных. Индуцированные заряды распределяются на внешней поверхности проводника. Явление перераспределения поверхностных зарядов на проводнике во внешнем электростатическом поле называется электростати­ческой индукцией.